Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 31-35    https://doi.org/10.11896/j.issn.1005-023X.2017.016.007
  材料研究 |
Cu/Fe双金属负载PAN非织造布催化降解甲醛气体研究*
韩旭1, 韩振邦1,2, 赵晓明1,2, 赵晋1, 赵世怀3
1 天津工业大学纺织学院, 天津 300387;
2 天津工业大学教育部先进复合材料重点实验室, 天津 300387;
3 天津工业大学环境与化学工程学院, 天津 300387
Enhanced Catalytic Properties of PAN Nonwoven Supported Cu-Fe Bimetallic Complex for Formaldehyde Degradation
HAN Xu1, HAN Zhenbang1,2, ZHAO Xiaoming1,2, ZHAO Jin1, ZHAO Shihuai3
1 School of Textiles, Tianjin Polytechnic University, Tianjin 300387;
2 Key Laboratory of Advanced Textile Composite Materials of Ministry of Education,Tianjin Polytechnic University, Tianjin 300387;
3 School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 1420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用偕胺肟改性聚丙烯腈(PAN)非织造布作为载体材料,将其与Cu2+和Fe3+的混合溶液进行反应制备双金属负载PAN非织造布催化剂。采用XPS和UV-Vis对催化剂的分子结构进行了表征,然后考察了其在甲醛气体氧化降解反应中的催化作用。结果表明, Cu2+和Fe3+均是通过与偕胺肟基团中的羟基和氨基的配位作用负载于PAN非织造布上,而且两种金属离子可能通过配体发生了相互作用。此外,与Fe3+的单金属催化剂相比,适量掺杂Cu2+能够有效提高催化体系在甲醛降解反应中的催化活性,尤其有利于其在暗反应时催化降解甲醛气体,这主要归因于Cu2+/Cu+价态转化促进了强氧化性中间体Fe(Ⅳ)=O的生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩旭
韩振邦
赵晓明
赵晋
赵世怀
关键词:  PAN非织造布  双金属  光催化  甲醛  降解    
Abstract: A Cu-Fe bimetallic catalyst was prepared by immersing amidoximated PAN nonwovens into the mixed metal solution containing CuSO4 and FeCl3. The catalyst was characterized by X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectroscopy (UV-vis), and then employed in the oxidative degradation of formaldehyde. The results suggested that Cu2+ and Fe3+ was immobilized onto the catalyst through coordination bonds with O-H and -NH2 in amidoxime group, and there may exist interaction between the two kinds of metal ions through the ligands. In addition, doping Cu2+ make the bimetallic catalyst exhibited better catalytic activity than the monometallic Fe3+ catalyst in formaldehyde degradation, especially under visible light and dark state, this should be attributed to the valence state transformation between Cu2+ and Cu+ which accelerate the generation of high oxidizing Fe(Ⅳ)=O.
Key words:  PAN nonwovens    bimetallic    photocatalysis    formaldehyde    degradation
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  X701.7  
  TS174.3  
  TB34  
基金资助: 天津市自然科学基金重点项目(12JCZDJC28400);天津市应用基础与前沿技术研究计划青年项目(15JCQNJC06300; 13JCYBJC37900);天津市高等学校科技发展基金计划项目(20140313); 天津工业大学研究生科技创新活动计划(16103)
通讯作者:  赵晓明:通讯作者,男,1963年生, 博士, 教授, 博士研究生导师, 从事防护纤维制品方面的研究 E-mail:zhaoxiaoming@tjpu.edu.cn   
作者简介:  韩旭:男, 1987年生,博士研究生,从事防护纤维制品方面的研究 E-mail:faithpure@126.com
引用本文:    
韩旭, 韩振邦, 赵晓明, 赵晋, 赵世怀. Cu/Fe双金属负载PAN非织造布催化降解甲醛气体研究*[J]. 《材料导报》期刊社, 2017, 31(16): 31-35.
HAN Xu, HAN Zhenbang, ZHAO Xiaoming, ZHAO Jin, ZHAO Shihuai. Enhanced Catalytic Properties of PAN Nonwoven Supported Cu-Fe Bimetallic Complex for Formaldehyde Degradation. Materials Reports, 2017, 31(16): 31-35.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.007  或          https://www.mater-rep.com/CN/Y2017/V31/I16/31
1 Wang Lei, Zhao Binyuan, Gan Qi, et al. Development of catalytic oxidation for the removal of indoor formaldehyde[J]. Mater Rev:Rev,2012,26(10):307(in Chinese).
王垒,赵斌元,甘琦,等.催化氧化去除室内甲醛技术的研究进展[J].材料导报:综述篇,2012,26(10):307.
2 Zhang Junmin, Zhu Zhongqi, Liu Qiang, et al. Research development of decontamination techniques for indoor formaldehyde pollution[J]. Mater Rev,2008,22(S1):346(in Chinese).
张俊敏,朱忠其,刘强,等.室内甲醛污染治理技术的研究进展[J].材料导报,2008,22(专辑20):346.
3 Chen Peng, Chen Yong, Chen Chao, et al. Preparation and properties of lanthanum doping TiO2/ACF composite photocatalyst[J]. Mater Rev:Res,2014,28(10):42(in Chinese).
陈鹏,陈勇,陈超,等.镧掺杂TiO2/活性炭纤维复合光催化材料的制备及性能[J].材料导报:研究篇,2014,28(5):42.
4 Xu Y, Huang S, Xie M, et al. Core-shell magnetic Ag/AgCl@Fe2O3 photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination[J]. New J Chem,2016,40(4):3413.
5 Dong Yongchun, Du Fang, Ma Hanxiao, et al. Preparation of a Fe-modified polyacrylonitrile fibrous photocatalyst and its application in degradation of reactive red MS[J]. Chin J Process Eng,2008,8(2):359(in Chinese).
董永春,杜芳,马汉晓,等.铁改性聚丙烯腈纤维光催化剂的制备及其对活性红MS的降解[J].过程工程学报,2008,8(2):359.
6 Han Zhenbang, Dong Yongchun, Ma Bin, et al. Degradation of azo dye catalized by different fiber-Fe complexes[J]. Acta Energiae Solaris Sin,2011,32(3):408(in Chinese).
韩振邦,董永春,马斌,等.不同PAN纤维铁配合物光催化偶氮染料降解反应[J].太阳能学报,2011,32(3):408.
7 Han Xu, Han Zhenbang, Zhao Xiaoming. Preparation of modified PAN nonwoven Fe complex and its photocatalytic performance on formaldehyde degradation[J]. China Environ Sci,2016,36(5):1353(in Chinese).
韩旭,韩振邦,赵晓明.改性PAN非织造布铁配合物可见光降解甲醛气体[J].中国环境科学,2016,36(5):1353.
8 Yu Jiantao, Han Zhenbang, Zhang Jianfei, et al. Preparation and photocatalytic properties of PAN fiber supported copper-iron bimetallic 2,2’-bipyridine complex[J]. J Funct Mater,2015,46(24):24095(in Chinese).
于建涛,韩振邦,张健飞,等.联吡啶铁铜双金属负载PAN纤维的制备及其可见光催化性能研究[J].功能材料,2015,46(24):24095.
9 Chen Shuang, He Lili, Liu Fangxia, et al. Hydroxylation of phenol over permutite supported Cu catalyst[J]. Sci Technol Eng,2010,10(6):1497(in Chinese).
陈双,何丽丽,刘芳霞,等.人造沸石负载铜催化剂催化苯酚羟化反应研究[J].科学技术与工程,2010,10(6):1497.
10 Dong Y, Han Z, Dong S, et al. Enhanced catalytic activity of Fe bimetallic modified PAN fiber complexes prepared with different assisted metal ions for degradation of organic dye[J]. Catal Today,2011,175(1):299.
11 Han Z, Guo J, Li W. Fe(bpy)32+ supported on amidoximated PAN fiber as effective catalyst for the photodegradation of organic dye under visible light irradiation[J]. Chem Eng J,2013,228:36.
12 Han Z, Dong Y, Dong S. Copper-iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation[J]. J Hazard Mater,2011,189(1-2):241.
13 Han Z, Han X, Zhao X, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. J Hazard Mater,2016,320(2016):27.
14 Dong Yongchun, Du Fang, Han Zhenbang. Coordination structure between modified PAN fiber and Fe(Ⅲ) ion and its catalytic function on degradation of azo dyes[J]. Acta Phys-Chim Sin,2008,24(11):2114(in Chinese).
董永春, 杜芳, 韩振邦. 改性PAN纤维与铁离子的配位结构及其对染料降解的催化作用[J]. 物理化学学报,2008,24(11):2114.
15 Liu X, Fan J H, Ma L M. Simultaneously degradation of 2,4-dichlorophenol and EDTA in aqueous solution by the bimetallic Cu-Fe/O2 system[J]. Environ Sci Pollut R,2015,22(2):1186
16 Li L, Jin J, Shi Z, et al. Cd (Ⅱ)-M (Ⅱ) hetero-nuclear coordination polymers: Synthesis, structure and photo-electric properties (M = Fe, Co, Cd)[J]. Inorg Chim Acta,2010,363(4):748.
17 Kunkely H, Vogler A. Photoredox reaction of (Pcts)Fe-Ⅲ(O-2(2-))Fe-Ⅲ (Pcts) with PctsH(2)= phthalocyaninetetrasulfonate induced by peroxide to Fe(Ⅲ) charge transfer excitation[J]. Inorg Chim Acta,2005,358(13):4086.
18 Rakibuddin M, Gazi S, Ananthakrishnan R. Iron(Ⅱ) phenanthroline-resin hybrid as a visible light-driven heterogeneous catalyst for green oxidative degradation of organic dye[J]. Catal Commun,2015,58(38):53.
19 De S D P, Wegeberg C, Vad M S, et al. Halogen-bonding-assisted iodosylbenzene activation by a homogenous iron catalyst[J]. Chemistry-A Eur J,2016,22(11):3810.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[3] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[6] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[7] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[10] 齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
[11] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[12] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[13] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[14] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[15] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed