Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 138-145    https://doi.org/10.11896/j.issn.1005-023X.2017.013.018
  生物医用材料 |
光电化学传感器及其在生物分析中的应用研究进展*
赵玉婷, 沈艳飞
东南大学医学院,南京 210009
Photoelectrochemical Sensor and Its Application in Bioanalysis: A Review
ZHAO Yuting, SHEN Yanfei
School of Medicine, Southeast University, Nanjing 210009
下载:  全 文 ( PDF ) ( 1646KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光电化学传感器是近年来发展起来的一种基于化学或生物识别过程的分析设备,因具有响应快速、灵敏度高、设备简单、价格低廉且易于微型化等优点,在生命分析和环境分析等领域受到了广泛关注。首先介绍了光电化学传感器的基本原理、分类及用于构建该类传感器的光电活性纳米材料,在此基础上进一步综述了光电化学传感器在生物分析中的应用,如用于DNA检测、免疫传感及酶分析等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵玉婷
沈艳飞
关键词:  光电化学  传感器  纳米复合材料  生物分析    
Abstract: Photoelectrochemical (PEC) sensor is a recently developed analytical device based on the process of chemical or biological recognition, which has the advantage of rapid response, high sensitivity. Moreover, the PEC sensor is simple, cheap and easy to realize miniaturization. As a result, PEC sensors have received intense interest in the fields of biological and environmental analysis. The basic principle, classification of PEC sensors, and the photoelectric active nanomaterials for the fabrication of PEC sensors are reviewed. Finally, the applications of PEC sensors in the fields of bioanalysis such as DNA detection, immunosensing and enzyme analysis are presented.
Key words:  photoelectrochemistry    sensor    nanocomposites    bioanalysis
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB333  
  O657.1  
基金资助: *国家自然科学基金(21675022;21305065)
通讯作者:  沈艳飞:通讯作者,女,1980年生,博士,教授,博士研究生导师,研究方向为光电化学和生命分析 E-mail:Yanfei.Shen@seu.edu.cn   
作者简介:  赵玉婷:女,1982年生,硕士,助理工程师,研究方向为光电化学和生物传感 E-mail:zyt_3_5@163.com
引用本文:    
赵玉婷, 沈艳飞. 光电化学传感器及其在生物分析中的应用研究进展*[J]. CLDB, 2017, 31(13): 138-145.
ZHAO Yuting, SHEN Yanfei. Photoelectrochemical Sensor and Its Application in Bioanalysis: A Review. Materials Reports, 2017, 31(13): 138-145.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.018  或          https://www.mater-rep.com/CN/Y2017/V31/I13/138
1 Sun Bing, Ai Shiyun. Fabrication and application of photoelectrochemical sensor [J]. Prog Chem,2014,26(5):834(in Chinese).
孙兵, 艾仕云. 光电化学传感器的构建及应用 [J]. 化学进展, 2014, 26(5):834.
2 Peter L M. Dynamic aspects of semiconductor photoelectrochemistry [J]. Chem Rev,1990,90(5):753.
3 Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells [J].Chem Rev,2010,110(11):6595.
4 Tada H, Fujishima M, Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(Ⅳ) dioxide and the applications to solar energy conversion [J]. Chem Soc Rev,2011,40(7):4232.
5 Zhao Weiwei, Ma Zhengyuan, Xu Jingjuan, et al. Progress in photoelectrochemical immunoassay [J]. Chin Sci Bull,2014,59(2):122(in Chinese).
赵伟伟, 马征远, 徐静娟, 等. 光电化学免疫分析研究进展 [J]. 科学通报, 2014, 59(2):122.
6 Zhang Zhaoxia, Zhao Changzhi. Progress of photoelectrochemical analysis and sensors [J]. Chin J Analyt Chem,2013,41(3):436(in Chinese).
张兆霞, 赵常志. 光致电化学分析及其传感器的研究进展[J]. 分析化学, 2013, 41(3):436.
7 Hu C G, Zheng J N, Su X Y, et al. Ultrasensitive all-carbon photoelectrochemical bioprobes for zeptomole immunosensing of tumor markers by an inexpensive visible laser light [J]. Analyt Chem,2013,85 (21):10612.
8 Zhao Weiwei.Study on the photoelectrochemical bioanlysis[D].Nanjing: Nan-jing University,2012(in Chinese).
赵伟伟. 光电化学生物分析法研究 [D]. 南京: 南京大学,2012.
9 Li M T, Meng G W, Huang Q, et al. Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites [J]. Scie-ntific Reports,2014,4(3):4284.
10 Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis [J]. Angewandte Chemie-Int Ed,2008,47(40):7602.
11 Hafeman D G, Parce J W, Mcconnell H M. Light-addressable potentiometric sensor for biochemical systems [J]. Science,1988,240 (4856):1182.
12 Zhao W W, Xu J J, Chen H Y. Photoelectrochemical bioanalysis: The state of the art [J]. Chem Soc Rev,2015,44(3):729.
13 Golub E, Pelossof G,Freeman R, et al. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles [J]. Analyt Chem,2009,81(22):9291.
14 Qian Z, Bai H J, Wang J L, et al. A photoelectrochemical sensor based on CdS-polyamidoamine nano-composite film for cell capture and detection [J]. Biosensors Bioelectron,2010,25(9):2045.
15 Peng Yong, Chen Jixiang, Lu Weimin. Study of nanomaterial′s optical characteristics [J]. J Shaanxi Institute of Technology,2003,19(1):16(in Chinese).
彭勇, 陈季香, 卢为民. 纳米材料的光学特性研究 [J]. 陕西工学院学报, 2003, 19(1):16.
16 Zhu Shidong, Zhou Genshu, Cai Rui, et al. Research of the nano-materials at home and abroad Ⅰ—The structure, specific effects and performance of the nano-materials [J]. Heat Treatment Technol Equip,2010,31(3):1(in Chinese).
朱世东, 周根树, 蔡锐, 等. 纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能 [J]. 热处理技术与装备,2010,31(3):1.
17 闫红. 浅谈纳米材料及其应用 [J]. 科技创新与应用,2013(14):54.
18 Li Yujin, Wang Jiusi, Tian Ling. Nano-material′s fundamental specific property, development and the general situation of it′s application [J]. J Gansu Education College:Nat Sci,2003,17(3):54 (in Chinese).
李玉金, 王九思, 田玲. 纳米材料的基本特性及发展和应用概况 [J]. 甘肃教育学院学报:自然科学版,2003,17(3):54.
19 He P A, Xu Y, Fang Y Z. Applications of carbon nanotubes in electrochemical DNA biosensors [J]. Microchim Acta,2006,152(3-4):175.
20 Trojanowicz M. Analytical applications of carbon nanotubes: A review [J]. Trac-Trends Analyt Chem,2006,25(5):480.
21 Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials [J]. Chem Soc Rev,2012,41(6):2283.
22 Yoon S H, Lim S, Song Y, et al. KOH activation of carbon nanofibers [J]. Carbon,2004,42(8-9):1723.
23 Yakovleva J, Davidsson R, Lobanova A, et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection [J]. Analyt Chem,2002, 74(13):2994.
24 Tang J, Su B L, Tang D P, et al. Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for alpha-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement [J]. Biosensors Bioe-lectron,2010,25(12):2657.
25 Zhang J, Lei J P, Xu C L, et al. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR [J]. Analyt Chem,2010,82(3):1117.
26 Jin Langping, Halidan·Jumahan, Jiang Zhongying. Photoelectrochemical sensor of gold nano-particle composite and its application [J]. Chem Bioeng,2016,33(1):1(in Chinese).
靳浪平, 哈丽旦·居马汗, 蒋中英. 金纳米复合材料的光电化学传感器及其应用 [J]. 化学与生物工程,2016,33(1):1.
27 Schwarze M,Tress W, Beyer B, et al. Band structure engineering in organic semiconductors [J]. Science,2016,352(6292):1446.
28 Yao Huiqin, Huang Shan, Gan Qianqian. Application of several common nanomaterials in electrochemical biosensors [J]. Chem Sens,2016,36(1):10(in Chinese).
姚惠琴, 黄珊, 甘倩倩. 几种常用的纳米材料在电化学生物传感器中的应用 [J]. 化学传感器,2016,36(1):10.
29 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666.
30 Wang Guangfeng, Zhu Yanhong,Chen Ling, et al. Applications of functional nanomaterials in electrochemical immunosensor [J]. Chin J Analyt Chem,2013,41(4):608(in Chinese).
王广凤, 朱艳红, 陈玲, 等. 功能性纳米材料在电化学免疫传感器中的应用 [J]. 分析化学,2013,41(4):608.
31 Sun Yufeng, Liu Shaobo, Li Huihua, et al. Synthesis of grapheme oxide and its gas sensing properties to NH3 [J]. J Funct Mater,2012,43(6):712(in Chinese).
孙宇峰, 刘少波, 李会华, 等. 氧化石墨烯的制备及其对NH3的敏感特性研究 [J]. 功能材料,2012,43(6):712.
32 Du D, Wang L M, Shao Y Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392) [J].Analyt Chem,2011,83(3):746.
33 Wan Y, Wang Y, Wu J J, et al. Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors [J]. Analyt Chem,2011,83(3):648.
34 Song Qi, Li Xianglong, Hao Long, et al. Synthesis and applications of graphenal polymer [J].Acta Polym Sin,2014(6):737(in Chinese).
宋琪, 李祥龙, 郝龙, 等. 石墨烯化聚合物的合成和应用 [J]. 高分子学报,2014(6):737.
35 Kroto H W, Heath J R, Obrien S C, et al. C-60-buckm insterfullerene [J]. Nature,1985,318(6042):162.
36 Du Youwei, Gu Gang, Zang Wencheng. The structure and preparation of all-carbon molecules(fullerenes) and their derivations [J]. Prog Phys,1995,15(3):233(in Chinese).
都有为, 顾刚, 臧文成. 全碳分子及其衍生物的结构与制备 [J]. 物理学进展,1995,15(3):233.
37 盛根玉. C60分子的发现 [J]. 化学教学,2012(2):68.
38 Tutt L W, Kost A. Optical limiting performance of C-60 and C-70 solutions [J]. Nature,1992,356(6366):225.
39 Shen Y F, Reparaz J S, Wagner M R, et al. Assembly of carbon nanotubes and alkylated fullerenes: Nanocarbon hybrid towards photovoltaic applications [J]. Chem Sci,2011,2(11):2243.
40 Shen Y F, Saeki A, Seki S, et al. Exfoliation of graphene and assembly formation with alkylated-C-60: A nanocarbon hybrid towards photo-energy conversion electrode devices [J]. Adv Opt Mater,2015,3(7):925.
41 Shen Y F, Nakanishi T. Fullerene assemblies toward photo-energy conversions [J]. Phys Chem Chem Phys,2014,16(16):7199.
42 Zhao X, Zhou S, Jiang L P, et al. Graphene-CdS nanocomposites: Facile one-step synthesis and enhanced photoelectrochemical cytosensing [J]. Chemistry,2012,18(16):4974.
43 Fan G C, Han L, Zhang J R, et al. Enhanced photoelectrochemical strategy for ultrasensitive DNA detection based on two different sizes of CdTe quantum dots cosensitized TiO2/CdS∶Mn hybrid structure [J].Analyt Chem,2014,86(21):10877.
44 Zhao M, Fan G C, Chen J J, et al. Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect [J]. Analyt Chem,2015,87(24):12340.
45 Zhang X R, Xu Y P, Yang Y Q, et al. A new signal-on photoelectrochemical biosensor based on a graphene/quantum-dot nanocomposite amplified by the dual-quenched effect of bipyridinium relay and AuNPs [J]. Chemistry,2012,18(51):16411.
46 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37.
47 Bai S, Shen X P, Zhu G X, et al. The influence of wrinkling in reduced graphene oxide on their adsorption and catalytic properties [J]. Carbon,2013,60(14):157.
48 Rodenas P, Song T, Sudhagar P, et al. Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation[J]. Adv Energy Mater,2013,3(2):176.
49 Han H, Song T, Lee E K, et al. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries[J]. ACS Nano,2012,6(9):8308.
50 Bai J, Zhou B X. Titanium dioxide nanomaterials for sensor applications[J]. Chem Rev,2014,114(19):10131.
51 Huo K F, Gao B, Fu J J, et al. Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays[J]. RSC Adv,2014,4(33):17300.
52 Brammer K S, Frandsen C J, Jin S. TiO2 nanotubes for bone rege-neration [J]. Trends Biotechnol,2012,30(6):315.
53 Wang G L, Xu J J, Chen H Y. Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation [J]. Biosensors Bioelectron,2009,24(8):2494.
54 Tu W W, Dong Y T, Lei J P, et al. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles [J]. Analyt Chem,2010,82(20):8711.
55 Da P M, Li W J, Lin X, et al. Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO2 nanowires [J]. Analyt Chem, 2014,86(13):6633.
56 Tu W W,Lei J P,Wang P,et al. Photoelectrochemistry of free-base-porphyrin functionalized zinc oxide nanoparticles and their applications in biosensing [J] Chemistry—A Eur J,2011,17(34):9440.
57 Wang L L, Fei T, Deng J A, et al. Synthesis of rattle-type SnO2 structures with porous shells [J]. J Mater Chem,2012,22(35):18111.
58 Zhang X R, Zhao Y Q, Li S G, et al. Photoelectrochemical biosensor for detection of adenosine triphosphate in the extracts of cancer cells [J]. Chem Commun,2010,46(48):9173.
59 Tang J, Kong B, Wang Y C, et al. Photoelectrochemical detection of glutathione by IrO2-Hemin-TiO2 nanowire arrays [J]. Nano Lett,2013,13(11):5350.
60 Wang Y C, Tang J, Peng Z, et al. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing [J]. Nano Lett,2014,14(6):3668.
61 Zhang X M, Huo K F, Peng X, et al. WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing [J]. Chem Commun,2013,49(63):7091.
62 Sun G Q, Zhang Y, Hong Q K, et al. CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink [J]. Biosensors Bioelectron,2015,66:565.
63 Devadoss A, Sudhagar P, Terashima C, et al. Photoelectrochemical biosensors:New insights into promisingphotoelectrodes and signal amplification strategies [J]. J Photochem Photobiol C,2015,24(3):43.
64 Zhao W W, Xu J J, Chen X Y. Photoelectrochemical DNA biosensors [J].Chem Rev,2014,114(15):7421.
65 Labuda J, Brett A M O, Evtugyn G, et al. Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC technical report) [J]. Pure Appl Chem,2010,82(5):1161.
66 Lu W, Wang G, Jin Y, et al. Label-free photoelectrochemical stra-tegy for hairpin DNA hybridization detection on titanium dioxide electrode [J]. Appl Phys Lett,2006,89(26):263902.
67 Lu W, Jin Y, Wang G, et al. Enhanced photoelectrochemical me-thod for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode [J]. Biosensors Bioelectron,2008,23(10):1534.
68 Liang M M, Jia S P, Zhu S C, et al. Photoelectrochemical sensor for the rapid detection of in situ DNA damage induced by enzyme-catalyzed fenton reaction [J]. Environ Sci Technol,2008,42(2):635.
69 Wu Y P, Zhang B T, Guo L H. Label-free and selective photoelectrochemical detection of chemical DNA methylation damage using DNA repair enzymes [J]. Analyt Chem,2013,85(14):6908.
70 Yan K, Wang R, Zhang J D. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode [J]. Biosensors Bioelectron,2014,53(9):301.
71 Yin H S, Wang M, Zhou Y L, et al. Photoelectrochemical biosen-sing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid [J].Biosensors Bioelectron,2014,53(4):175.
72 Haddour N, Cosnier S, Gondran C. Electrogeneration of a biotinylated poly(pyrrole-ruthenium(Ⅱ)) film for the construction of photoelectrochemical immunosensor [J]. Chem Commun,2004,10(21):2472.
73 Shu J, Qiu Z L, Zhou Q, et al. Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter [J]. Analyt Chem,2016,88(5):2958.
74 Clark L C, Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery [J]. Annals New York Academy Sci,1962,102(1):29.
75 Zhao W W, Yu P P, Xu J J, et al. Ultrasensitive photoelectrochemical biosensing based on biocatalytic deposition [J]. Electrochem Commun,2011,13(5):495.
76 Zhao W W, Shan S, Ma Z Y, et al. Acetylcholine esterase antibo-dies on BiOI nanoflakes/TiO2 nanoparticles electrode: A case of application for general photoelectrochemical enzymatic analysis [J].Analyt Chem,2013,85(24):11686.
77 Pardo-Yissar V, Katz E, Wasserman J, et al. Acetylcholine este-rase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors [J]. J Am Chem Soc,2003,125(3):622.
78 Wang Guangli, Xu Jingjuan, Chen Hongyuan. Progress in the stu-dies of photoelectrochemical sensors [J]. Sci China Series B: Chem,2009,39(11):1336(in Chinese).
王光丽, 徐静娟, 陈洪渊. 光电化学传感器的研究进展 [J]. 中国科学B辑: 化学,2009,39(11):1336.
79 Zhang X, Li S, Jin X, et al. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chem Commun,2011,47(17):4929.
80 Hu Y, Xue Z, He H, et al. Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene [J]. Biosensors Bioelectron,2013,47:45.
81 Yan K, Liu Y, Yang Y H, et al. A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline [J]. Analyt Chem,2015,87(24):12215.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[3] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[4] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[5] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[6] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[7] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[8] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[9] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[10] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[11] 吴伟同, 徐迪, 程学群, 张达威, 李晓刚. 国家材料腐蚀与防护科学数据中心建设历程与发展现状[J]. 材料导报, 2024, 38(23): 23090008-8.
[12] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[13] 麻艳佳, 杨黎, 郭胜惠, 侯明, 朱烨, 张德起, 高冀芸. 用于低浓度氢气检测的超灵敏TiO2传感材料高通量筛选方法研究[J]. 材料导报, 2024, 38(18): 23040092-7.
[14] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[15] 鲍艳, 韩旆, 张文博, 刘锋, 高璐, 马建中. 螺吡喃类刺激响应变色聚合物的研究进展[J]. 材料导报, 2024, 38(17): 23060044-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed