Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 96-100    https://doi.org/10.11896/j.issn.1005-023X.2017.010.020
  材料研究 |
机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控
张雄1,周永江2,黄丽华2
1 空军驻长沙地区军事代表室,长沙 410011;
2 国防科技大学新型陶瓷纤维及其复合材料国防科技重点实验室,长沙 410073
Preparation and Dielectric Properties of Polystyrene Foam Material Used for Luneburg Lens Antenna
ZHANG Xiong1, ZHOU Yongjiang2, HUANG Lihua2
1 Military Representative Office of Air Force in Changsha Area, Changsha 410011;
2 Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 1214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对雷达通讯微波频段新型轻质介电复合材料的迫切需求,开展高介电性能复合材料的研究具有现实意义。采用悬浮聚合法制备不同密度的聚苯乙烯泡沫,研究了聚苯乙烯泡沫的介电常数与密度之间的关系,分析了钛酸钡粉末的介电性能。采用干混法添加钛酸钡粉末制备介电常数可调控的轻质钛酸钡/聚苯乙烯复合泡沫。聚苯乙烯泡沫的介电常数随密度增大,表现出弱的频率依赖性和低介电损耗。钛酸钡粉末具有高的介电常数和较低的介电损耗。BaTiO3/PS复合材料的介电常数随着BaTiO3含量的增加而升高。相同介电常数的BaTiO3/PS复合材料和聚苯乙烯泡沫相比,密度显著下降,说明添加BaTiO3可以实现介电材料的轻质化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雄
周永江
黄丽华
关键词:  龙伯透镜  聚苯乙烯发泡塑料  钛酸钡  介电性能    
Abstract: The research on the composite material with high dielectric property is significant for the need of a new type of light dielectric composite material in modern radar and communication system. Polystyrene (PS) foam with different densities was synthesized by suspension polymerization, and the relationship between the dielectric constant and the density of PS foam was studied. The dielectric property of barium titanate (BaTiO3) powder were analyzed. The light barium titanate/polystyrene composite foam was prepared by the dry-mixing method. The dielectric constant of foam or BaTiO3/PS composites increases with the density and shows weak frequency-dependence and low dielectrical loss. Barium titanate powder has high dielectric constant and low dielectrical loss. The dielectric constant of BaTiO3/PS composites increases with the increase of BaTiO3 content. When the dielectric constant of materials are the same, BaTiO3/PS composites is less dense and lighter than that of polystyrene foam, which indicates that the addition of BaTiO3 can realize the weight reduction of dielectric materials.
Key words:  Luneburg lens    polystyrene foam    barium titanate    dielectric property
发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 张雄:男,1981年生,硕士,主要从事雷达隐身材料的研究E-mail:jaekgfkd@163.com周永江:通讯作者,男,1976年生,主要从事雷达隐身材料的研究E-mail:zyj.ly@163.com
引用本文:    
张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
ZHANG Xiong, ZHOU Yongjiang, HUANG Lihua. Preparation and Dielectric Properties of Polystyrene Foam Material Used for Luneburg Lens Antenna. Materials Reports, 2017, 31(10): 96-100.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.020  或          https://www.mater-rep.com/CN/Y2017/V31/I10/96
1 Luneberg R K, Allen L K. Mathematical theory of optics [J]. Am J Phys,1966,34(1):80.
2 Braun E. Radiation characteristics of the spherical luneberg lens [J]. IRE Trans Antennas Propagation,1956,4(2):132.
3 Peeler G, Coleman H. Microwave stepped-index luneberg lenses [J]. IRE Trans Antennas Propagation,1958,6(2):202.
4 Tai C T. The electromagnetic theory of the spherical luneberg lens [J]. Appl Sci Res Sect B,1959,7(1):113.
5 田江晓,郭杰,莫崇江.龙伯透镜制造工艺研究现状及发展趋势分析[J].飞航导弹,2013(5):84.
6 冯孝中,李亚东.高分子材料[M].哈尔滨:哈尔滨工业大学出版社,2006:63.
7 Carpenter Michael,et al. Lens of gradient dielectric constant and methods of production: US,6433936B1[P].2002.
8 Liang Min, Ng Wei-Ren, Chang Kihun, et al.An X-band Luneburg lens antenna fabricated by rapid prototyping technology [C]//2011 IEEE MTT-S International Microwave Symposium.Baltimore,2011:1.
9 Zhu Jianhua, Liang Fei, Wang Xiaohong, et al. Discussion on mu-tual restrain relation between the dielectric properties of microwave dielectric ceramic materials [J]. Electron Components Mater,2005,24(3):32(in Chinese).
朱建华,梁飞,汪小红,等. 微波介质陶瓷材料介电性能间的制约关系[J].电子元件与材料,2005,24(3):32.
10 Chen Q, Hong R Y, Feng W G. Preparation and characterization of composites from Ba0.5Sr0.5TiO3 and polystyrene[J].J Alloys Compd,2014,609:274.
[1] 路宇, 周斌, 韩冰, 赵国祥, 陈学锋, 王根水. 合成工艺对固相法制备高四方性纯钛酸钡粉体的影响[J]. 材料导报, 2024, 38(7): 22080107-4.
[2] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[3] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[4] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[5] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[6] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[7] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[8] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[9] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[10] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[11] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[12] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[13] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[14] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[15] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed