Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 101-106    https://doi.org/10.11896/j.issn.1005-023X.2017.010.021
  材料研究 |
由液化物树脂制备多孔碳纳米纤维及其表征*
陶磊1,郑云武1,2,邸明伟1,张彦华1,郑志锋2
1 东北林业大学材料科学与工程学院, 哈尔滨 150040;
2 西南林业大学材料科学与工程学院,云南省生物质高效利用工程实验室;
云南省高校生物质化学炼制与合成重点实验室, 昆明 650224
Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization
TAO Lei1, ZHENG Yunwu1,2, DI Mingwei1, ZHANG Yanhua1, ZHENG Zhifeng2
1 College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040;
2 Engineering Laboratory for Highly-efficient Utilization of Biomass, Yunnan Province;
University Key Laboratory for Biomass Chemical Refinery & Synthesis, Yunnan Province;
College of Materials Engineering, Southwest Forestry University, Kunming 650224
下载:  全 文 ( PDF ) ( 1365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以壳粉为原料,在碱性条件下制备液化物树脂(LPF),经静电纺丝、固化、碳化得到多孔碳纳米纤维(PCNF)。探讨了聚乙烯醇(PVA)用量对纺丝液特性及纤维形貌的影响。同时,采用傅里叶变换红外光谱(FTIR)、热重分析仪(TG)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、全自动比表面积及孔隙分析仪(BET)等方法对不同碳化温度下的样品进行表征。结果表明:少量PVA可以明显提高LPF的纺丝性,且随PVA用量的增加,纤维的形貌更规整、直径更小;随着碳化温度的升高,LPF/PVA纤维逐渐裂解,多数官能团消失,基体为多苯稠环结构;同时,层间距d(002)逐渐减小,平面尺寸Lc和Lc/d(002)增加,纤维内部的类石墨结构逐渐向更规整、有序的石墨微晶结构转变;当碳化温度为800 ℃时,LPF/PVA的含碳量达55%以上,随着PVA用量的增加,纤维的比表面积明显增大且多以微孔为主,当PVA用量为8%时,得到比表面积为590 m2/g的多孔碳纳米纤维。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶磊
郑云武
邸明伟
张彦华
郑志锋
关键词:  液化物树脂  静电纺丝  多孔碳纳米纤维    
Abstract: Porous carbon nanofiber (PCNF) was prepared through electrospinning, curing and carbonization with liquid phenolic resin and polyvinyl alcohol (PVA) as raw materials. The influence of PVA content on the properties of electrospun solution and fiber morphology was discussed. The obtained fibers were characterized by FTIR, TG, SEM, XRD and BET techniques. The results showed that a small amount of PVA could obviously improve the spin-ability of LPF. With the increase of PVA content, the morphology of fiber is more regular and the diameter is smaller. With the carbonization temperature increased, the LPF/PVA fiber pyrolysed gradually, most functional groups were eliminated, and the matrix turned into benzene fused ring structure. At the same time, the value of d(002) decreased, while the values of Lc and Lc/d(002) increased, which implied that arrangement of graphite crystal among of LPF/PVA fiber layers was regularly piled up, and both the carbon net structure and the graphitoidal degree of fiber were deve-loped and improved remarkably. When the carbonization temperature was 800 ℃,the carbon content of LPF/PVA fiber was higher than 55%. The specific surface and pore volume of LPF/PVA fiber increased gradually with the PVA content and the main structure was microporous. When the content of PVA was 8%, a PCNF structure with a surface area of 590 m2/g could be obtained.
Key words:  liquid phenolic resin    electrospinning    porous carbon nanofiber
发布日期:  2018-05-08
ZTFLH:  TQ351  
基金资助: *云南省应用基础研究重点项目(2014FA034);国家自然科学基金(31670599;31160147)
通讯作者:  郑志锋,男,1975年生,博士,教授,博士研究生导师,研究方向为生物质能源与材料E-mail:zhengzhifeng666@163.com   
作者简介:  陶磊:男,1990年生,博士研究生,研究方向为生物质基材料的制备及应用
引用本文:    
陶磊,郑云武,邸明伟,张彦华,郑志锋. 由液化物树脂制备多孔碳纳米纤维及其表征*[J]. 材料导报编辑部, 2017, 31(10): 101-106.
TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization. Materials Reports, 2017, 31(10): 101-106.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.021  或          https://www.mater-rep.com/CN/Y2017/V31/I10/101
1 Naik J R, Bikshapathi M, Singh R K, et al. Preparation, surface functionalization, and characterization of carbon micro fibers for adsorption applications [J]. Environmental Eng Sci,2011,28(10):725.
2 Teng M, Qiao J, Li F, et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules [J]. Carbon,2012,50(8):2877.
3 Lin C L, Cheng Y H, Liu Z S, et al. Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas [J]. J Hazard Mater,2011,197:254.
4 Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization [J]. Chem Eng J,2014,252:30.
5 Arami-Niya A, Daud W M A W, Mjalli F S, et al. Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology [J]. Chem Eng Res Des,2012,90(6):776.
6 Suzuki K, Matsumoto H, Minagawa M, et al. Preparation of carbon fiber fabrics from phenolic resin by electrospray deposition [J]. Polym J,2007,39(11):1128.
7 Ma C, Song Y, Shi J, et al. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors [J]. Mater Lett,2012,76:211.
8 Nan D, Liu J, Ma W. Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption [J]. Chem Eng J,2015,276:44.
9 Hu S, Hsieh Y L. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin [J]. J Mater Chem A,2013,1(37):11279.
10 You X, Koda K, Yamada T, et al. Preparation of electrode for electric double layer capacitor from electrospun lignin fibers [J]. Holzforschung,2015,69(9):1097.
11 Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning [J]. Polymer,1999,40(16):4585.
12 Oroumei A, Fox B, Naebe M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin [J]. ACS Sustainable Chem Eng,2015,3(4):758.
13 Bommier C, Luo W, Gao W Y, et al. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J]. Carbon,2014,76(9):165.
14 Frank E, Hermanutz F, Buchmeiser M R. Carbon fibers: Precursors, manufacturing, and properties [J]. Macromolecular Mater Eng,2012,297(6):493.
15 Li D N, Ma X J. Preparation and characterization of activated carbon fibers from liquefied wood [J]. Cellulose,2013,20(4):1649.
[1] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[2] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[3] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[4] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[5] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[6] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[7] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[8] 周鉴澄, 林骏, 赵小敏, 陈丹青, 陈国华. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 21100141-7.
[9] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[10] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[11] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[12] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[13] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[14] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[15] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed