Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 865-869    https://doi.org/10.11896/j.issn.1005-023X.2018.06.003
  材料研究 |
定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响
徐志超1, 冯中学1, 史庆南1, 杨应湘2, 王效琪2, 起华荣2
1 昆明理工大学材料科学与工程学院, 昆明 650093;
2 云南省新材料制备与加工重点实验室,昆明 650093
Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance
XU Zhichao1, FENG Zhongxue1, SHI Qingnan1, YANG Yingxiang2, WANG Xiaoqi2, QI Huarong2
1 School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Key Laboratory of Advances Materials of Yunnan Province, Kunming 650093
下载:  全 文 ( PDF ) ( 2240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的微观结构以及对电磁屏蔽性能的影响。实验结果表明Mg98.5-Zn0.5Y1合金中生成了有序排列的片层状14H-LPSO相。通过对比普通铸造与定向凝固Mg98.5Zn0.5Y1合金的电磁屏蔽性能,发现有序排列的LPSO相可以提高合金的电磁屏蔽性能。阐述了多层均匀平面体屏蔽体的理论模型,探讨了长周期有序相的位向与镁合金电磁屏蔽性能的关系。通过在合金中加入Zr元素,研究了LPSO相的宽度对电磁屏蔽性能的影响。结果表明,在高频下细小的LPSO相能够提升材料的电磁屏蔽性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志超
冯中学
史庆南
杨应湘
王效琪
起华荣
关键词:  Mg98.5Zn0.5Y1合金  14H-LPSO  晶体结构  Zr  电磁屏蔽    
Abstract: The microstructure of the LPSO phase in Mg98.5Zn0.5Y1 alloy prepared by directional solidification and its effect on electromagnetic shielding performance were investigated. The formation of 14H-type LPSO was observed. For the directional solidification polycrystals, the LPSO exhibited a lamellar shape. By comparing the electromagnetic shielding properties of ordinary cast and directional solidified Mg98.5Zn0.5Y1 alloy, it was found that the ordered LPSO phase could increase the electromagnetic shielding performance. The theoretical model of multi-layer uniform planar and the relationship between electromagnetic shielding performance and orientation of LPSO in magnesium were discussed. By adding the element Zr, the effect of the LPSO width on the electromagne-tic shielding performance was investigated. The result showed that the electromagnetic shielding performance was improved in high frequency due to the addition of Zr.
Key words:  Mg98.5Zn0.5Y1 alloy    14H-LPSO    crystal structure    zirconium    electromagnetic shielding
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2+2  
基金资助: 云南省科技厅青年基金项目(2016FD033); 省级人培项目(KKSY201351055); 教育部博士点基金(20135314110003); 校重点基金(KKZ1201451001)
作者简介:  徐志超:男,1989年生,博士研究生,主要研究方向为稀土镁合金 E-mail:xzc@kmust.edu.cn; 冯中学:通信作者,男,副教授,研究方向为稀土镁合金 E-mail:fzxue@163.com
引用本文:    
徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance. Materials Reports, 2018, 32(6): 865-869.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.003  或          https://www.mater-rep.com/CN/Y2018/V32/I6/865
1 Radasky W A. The threat of intentional interference (IEMI) to wired and wireless systems[C]∥Proceedings of the International Zurich Symposium on Electromagnetic Compatibility.Singapore,2006.
2 Gooch J W, Daher J K. Electromagnetic shielding and corrosion protection for aerospace vehicles[M].New York:Springer,2007.
3 刘顺华.电磁波屏蔽及吸波材料.第2版[M].北京:化学工业出版社,2014.
4 Vasquez H, Espinoza L, Lozano K, et al. Simple device for electromagnetic interference shielding effectiveness measurement[C]∥2009 IEEE,2009.
5 Liu X Y, Zhan M S, Wang K. Preparation and characterization of electromagnetic interference shielding polyimide foam[J].Journal of Applied Polymer Science,2012,127(5):4129.
6 Chen X, Liu L, Pan F, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys[J].Materials Science & Engineering B,2015,197(1):67.
7 Geetha S, Satheesh Kumar K K, Rao C R K, et al. EMI shielding: Methods and materials—A review[J].Journal of Applied Polymer Science,2009,112(4):2073.
8 Chen X, Liu J, Zhang Z, et al. Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy[J].Materials & Design,2012,42:327.
9 Xu Z C, Shi Q N, Feng Z X. Advances in application of magnesium alloys LPSO structure[J].Hot Working Technology,2015(18):22(in Chinese).
徐志超,史庆南,冯中学.镁合金中LPSO相的应用研究进展[J].热加工工艺,2015(18):22.
10 Schulz R B, Plantz V C, Brush D R. Shielding theory and practice[J].IEEE Transactions on Electromagnetic Compatibility,1988,30(3):187.
11 Lu Ruopeng. Microstructure evolution of LPSO phase and the corresponding damping capacities and mechanical properties in Mg-Zn-Y alloys[D].Chongqing:Chongqing University,2015(in Chinese).
鲁若鹏. Mg-Zn-Y合金中LPSO相的调控及其对阻尼和力学性能的影响机制研究[D].重庆:重庆大学,2015.
12 Zhu Y M, Weyland M, Morton A J, et al. The building block of long-period structures in Mg-RE-Zn alloys[J].Scripta Materialia,2009,60:980.
13 Tang P Y, Wu M M, Tang B Y, et al. Microstructure of 18R-type long period ordered structure phase in Mg97Y2Zn1 alloy[J].Transactions of Nonferrous Metals Society of China,2011,21(4):801.
14 Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J].Acta Materialia,2010,58(14):4760.
15 Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J].Acta Materialia,2010,58(8):2936.
16 Schulz R B, Plantz V C, Brush D R. Shielding theory and practice[J].IEEE Transactions on Electromagnetic Compatibility,1992,30(3):187.
17 Lv B J, Peng J, Zhu L L, et al. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy[J].Materials Science & Engineering A,2014,599(1):150.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[3] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[4] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[5] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[6] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[7] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[8] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[9] 赵建江, 陈云敏, 韦华. ZrO2(AlN)/h-BN复合陶瓷性能研究及超重力凝固坩埚研制[J]. 材料导报, 2024, 38(21): 23080202-6.
[10] 刘柱, 孙玉崇, 侯忠霖, 徐振, 吕哲, 陈庆强. Zr含量对5083铝合金铸轧板组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080148-6.
[11] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[12] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[13] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[14] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[15] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed