Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 860-864    https://doi.org/10.11896/j.issn.1005-023X.2018.06.002
  材料研究 |
二硫化钼纳米片的制备及其光敏和气敏特性研究
马浩, 杨瑞霞, 李春静, 韩应宽
河北工业大学电子信息工程学院,天津 300400
Fabrication and Characteristics of MoS2 Nanosheets on Photo-sensing and Gas-sensing
MA Hao, YANG Ruixia, LI Chunjing, HAN Yingkuan
School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300400
下载:  全 文 ( PDF ) ( 2183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用高温硫化法制备了高纯度MoS2纳米片。采用X射线衍射仪(XRD)、拉曼光谱仪(Raman spectrometer)、扫描电镜(SEM)和能谱仪(EDS)对MoS2纳米片的物相、结晶质量以及形貌进行了表征,分析了反应温度对MoS2纳米片的影响,并对MoS2纳米片的光敏性和气敏特性进行了研究。结果表明,MoS2纳米片对绿光响应度更高,红光次之,对甲醇和乙醇两种气体均有较高的灵敏度和响应/恢复速率,并对其气敏机理进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马浩
杨瑞霞
李春静
韩应宽
关键词:  MoS2  纳米片  光敏特性  气敏特性    
Abstract: High-purity MoS2 nanosheets have been synthesized by thermal sulfuration method. The phase and morphology of the samples were characterized by X-ray diffraction, Raman spectrometer, scanning electron microscope and energy dispersive spectrometer. The effect of reaction temperature on the MoS2 nanosheets was analyzed. The photo sensitive and gas sensitive properties of MoS2 were studied. It was found that the nanosheets was more sensitive to the green light than the red light. High sensor response and fast response/recovery time to methanol, ethanol were observed in MoS2 nanosheets based device, and its gas sensing mechanism was discussed.
Key words:  molybdenum disulfide    nanosheets    photo sensitive    gas sensitive
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TQ125  
基金资助: 天津市自然科学基金重点项目(15JCZDJC37800); 河北省自然科学基金(F2014202184)
作者简介:  马浩:男,1990年生,硕士,主要从事二维材料与器件方面的研究 E-mail:mhhebut@outlook.com;杨瑞霞:通信作者,男,1957年生,教授,主要从事新型电子材料与器件方面的研究 E-mail:yangrx@hebut.edu.cn
引用本文:    
马浩, 杨瑞霞, 李春静, 韩应宽. 二硫化钼纳米片的制备及其光敏和气敏特性研究[J]. 材料导报, 2018, 32(6): 860-864.
MA Hao, YANG Ruixia, LI Chunjing, HAN Yingkuan. Fabrication and Characteristics of MoS2 Nanosheets on Photo-sensing and Gas-sensing. Materials Reports, 2018, 32(6): 860-864.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.002  或          https://www.mater-rep.com/CN/Y2018/V32/I6/860
1 Miro P, Audiffred M, Heine T. An atlas of two-dimensional mate-rials[J].Chemical Society Reviews,2014,43(18):6537.
2 Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J].Physical Review Letters,2010,105(13):136800.
3 Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J].Physical Review B,2011,83(24):245208.
4 Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2[J].Applied Physics Letters,2012,101(4):043103.
5 Wu D, Zhang Z, Lv D, et al. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2[J].Materials Express,2016,6(2):198.
6 Saito Y, Nakamura Y, Bahramy M S, et al. Superconductivity protected by spin-valley locking in ion-gated MoS2[J].Nature Physics,2016,12(2):144.
7 Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J].Applied Sciences,2016,6(3):78.
8 Ye Y, Ye Z, Gharghi M, et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2[J].Applied Physics Letters,2014,104(19):193508.
9 Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J].Nature Materials,2015,14(3):301.
10 Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials[J].Nano Letters,2013,13(8):3664.
11 Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J].American Chemical Society Nano,2011,6(1):74.
12 Long H, Harley Trochimczyk A, Pham T, et al. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection[J].Advanced Functional Materials,2016,3:1002.
13 Shokri A A, Salami N. Gas sensor based on MoS2 monolayer[J].Sensors and Actuators B:Chemical,2016,236:378.
14 Cho B, Hahm M G, Choi M, et al. Charge-transfer-based gas sen-sing using atomic-layer MoS2[J].Scientific Reports,2015,5:8052.
15 Liu B, Chen L, Liu G, et al. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J].American Chemical Society Nano,2014,8(5):5304.
16 Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J].Nature Nanotechnology,2013,8(7):497.
17 Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells[J].Nanoscale,2012,4(23):7399.
18 Li H, Yin Z, He Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J].Small,2012,8(1):63.
19 Perea-López N, Lin Z, Pradhan N R, et al. CVD-grown monola-yered MoS2 as an effective photosensor operating at low-voltage[J].2D Materials,2014,1(1):011004.
20 Cunningham P D, McCreary K M, Hanbicki A T, et al. Charge trapping and exciton dynamics in large-area CVD grown MoS2[J].The Journal of Physical Chemistry C,2016,120(10):5819.
21 Toth P S, Velicky M, Bissett M A, et al. Asymmetric MoS2/graphene/metal sandwiches: Preparation, characterization, and application[J].Advanced Materials,2016,28(37):8256.
22 Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J].Nano Letters,2012,12(3):1538.
23 Heyne M H, Chiappe D, Meersschaut J, et al. Multilayer MoS2 growth by metal and metal oxide sulfurization[J].Journal of Mate-rials Chemistry C,2016,4(6):1295.
24 Wu Z, Wang D, Wang Y, et al. Preparation and tribological properties of MoS2 nanosheets[J].Advanced Engineering Materials,2010,12(6):534.
25 牛德芳.半导体传感器原理及其应用[M].大连:大连理工大学出版社,1993:195.
26 Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J].American Chemical Society Nano,2011,5(10):7707.
27 Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J].Nano Letters,2012,12(7):3695.
28 Xuan Tianmei,Yin Guilin,Ge Meiying,et al. Research progress on nano-ZnO gas sensors[J].Materials Review A:Review Papers,2015,29(1):132(in Chinese).
宣天美,尹桂林,葛美英,等.纳米ZnO气敏传感器研究进展[J].材料导报:综述篇,2015,29(1):132.
[1] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[2] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[3] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[6] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[7] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[8] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[9] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[10] 陶莹, 马壮, 李思南, 曲涛, 李玲玲. 二维沸石纳米片的合成与应用[J]. 材料导报, 2023, 37(17): 22010235-9.
[11] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[12] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[13] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[14] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[15] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed