Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 646-649    https://doi.org/10.11896/j.issn.1005-023X.2018.04.028
  材料研究 |
掺加改性淀粉制备聚羧酸减水剂及其应用
何廷树1, 杨仁和1, 徐一伦2, 李同新2, 房佳斌1
1 西安建筑科技大学材料与矿资学院,西安 710055;
2 陕西友邦新材料科技有限公司,西安 712046
Synthesis and Application of Polycarboxylate Superplasticizer with Modified Starch
HE Tingshu1, YANG Renhe1, XU Yilun2, LI Tongxin2, FANG Jiabin1
1 College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055;
2 Shaanxi Youbang New Material Technology Co. Ltd., Xi'an 712046;
下载:  全 文 ( PDF ) ( 1201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取经过降解处理的羧甲基淀粉醚(CMS-Na)代替部分异戊烯基聚氧乙烯醚(TPEG)制备一种新型聚羧酸系减水剂(PC2),利用水泥净浆单组分试验得出CMS-Na对TPEG的最佳替代量为15%。另外,用红外光谱(FTIR)对CMS-Na及聚羧酸减水剂的分子结构进行了表征。结果表明,掺加CMS-Na合成的PC2不仅降低了原材料的成本,而且具有良好的分散性和保塑性,同时不影响混凝土强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何廷树
杨仁和
徐一伦
李同新
房佳斌
关键词:  聚羧酸减水剂  羧甲基淀粉醚  异戊烯基聚氧乙烯醚  替代量  混凝土    
Abstract: A new type of polycarboxylate superplasticizer (PC2) was synthesized by using the carboxymethyl starch ether (CMS-Na) to replace part of isopentenyl polyoxyethylene ether (TPEG). The best substitute of CMS-Na for TPEG was obtained by single component test of cement paste, which was 15%. In addition, the molecular structure of CMS-Na and polycarboxylate superplasticizer was characterized by infrared spectroscopy (FTIR).The results showed that PC2 not only reduced the cost of raw mate-rials, but also had excellent dispersion and plastic preservation abilities, while do no harm to the compressive strength of concrete.
Key words:  polycarboxylate superplasticizer    carboxymethyl starch ether    isopentenyl polyoxyethylene ether    substitution amount    concrete
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TU528.042.2  
基金资助: 陕西省工业攻关项目(2016GY-205)
作者简介:  何廷树:男,1965年生,教授,博士研究生导师,主要从事混凝土外加剂的开发与应用研究 E-mail:hetingshu@xauat.edu.cn
引用本文:    
何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
HE Tingshu, YANG Renhe, XU Yilun, LI Tongxin, FANG Jiabin. Synthesis and Application of Polycarboxylate Superplasticizer with Modified Starch. Materials Reports, 2018, 32(4): 646-649.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.028  或          https://www.mater-rep.com/CN/Y2018/V32/I4/646
1 黄靖,郭京育,等.聚羧酸系高性能减水剂及其应用技术新进展[M].北京:北京理工大学出版社,2015.
2 张燕萍.变性淀粉的制造与应用[M].北京:化学工业出版社,2007:73.
3 Zhang Xiaodong, Liu Xin, Li Wenying. Synthesis and applied pro-perties of carboxymethyl corenstarch[J].Journal of Applied Polymer Science,2003,89:3016.
4 Kittipongpatana O S, Sirithunyalug J, Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches[J].Carbohydrate Polymers,2006,63(1):105.
5 Zhao Meigui. Study on polyether type and modified starch composite superplasticizer[D].Wuhan:Hubei University,2014(in Chinese).
赵梅桂.聚醚型及其与改性淀粉复合型高性能减水剂的研究[D].武汉:湖北大学,2014.
6 Zhang Jingwu, Wu Dahua. The mechanism of resistance to enzymic degradation df carboxymetmyl starch and its distribution of substi-tuent groups along the chain[J].Journal of Tianjin University,1991(4):83(in Chinese).
张镜吾,吴达华.羧甲基淀粉醚的抗酶降解机理和取代基在分子链上的分布[J].天津大学学报,1991(4):83.
7 Andersen P J, Roy D M, Gaidis J M. The effect of superplasticizer molecular weight on its adsorption on and dispersion of cement[J].Cement and Concrete Research,1988,18(6):980.
8 Sun Zhenping,Wang Ling. How to safely and efficiently apply polycarboxylate based superplasticizer[J].Concrete, 2007(6):35(in Chinese).
孙振平,王玲.如何安全高效地应用聚羧酸系减水剂[J].混凝土,2007(6):35.
9 Li Ping. Polycarboxylate superplasticizers and their mechanism[D].Tianjin:Hebei University of Technology,2010(in Chinese).
李平.聚羧酸系高效减水剂及其机理研究[D].天津:河北工业大学,2010.
10 何廷树.混凝土外加剂[M].西安:陕西科学技术出版社,2003:93.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[11] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[12] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[13] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[14] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[15] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed