Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 106-111    https://doi.org/10.11896/j.issn.1005-023X.2017.09.014
  材料综述 |
肖特基型光催化剂研究进展*
樊启哲, 钟立钦, 冯庐平, 余长林, 廖春发
江西理工大学冶金与化学工程学院,赣州 341000
New Development of Schottky Type Photo-catalyst
FAN Qizhe, ZHONG Liqin, FENG Luping, YU Changlin, LIAO Chunfa
School of Metallurgy and Chemical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000
下载:  全 文 ( PDF ) ( 1647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 贵金属与半导体复合形成的催化剂具备肖特基结结构,该结构具有整流特性和较低的界面电压,可以调控光生电子的产生和流向,使电子和空穴更有效地分离,提升光催化性能。综述了近年来肖特基半导体光催化剂的研究进展,分析了晶面沉积、形貌结构、表面等离子体效应及共掺杂等因素对该类催化剂性能的影响,从降解污染物、制氢、二氧化碳还原等方面阐述了这类催化剂在环境控制领域的实际应用,并提出了势垒高度、产物控制及催化剂循环利用等潜在的研究方向。肖特基型光催化剂独特的性质将使其成为新的研究热点,得到更深入的研究和应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊启哲
钟立钦
冯庐平
余长林
廖春发
关键词:  肖特基  光催化  降解  废水    
Abstract: The combination of noble metal with semiconductor can produce the Schottky junction. Schottky junction possesses rectification property and low interface voltage, which can be uesd to control the production and flow of photoinduced electrons. Therefore, over the photocatalyst with Schottky junction, the separation of photoinduced electrons and holes can be effectively promoted and the photocatalytic efficiency is expected to be improved. In this paper, the progress in Schottky semiconductor photocatalyst is summarized. The effects of crystal facet deposition, morphological structure, surface plasmon resonance and co-doping on the photocatalytic performance of the Schottky junction photocatalyst are analyzed. The application prospect in environmental control including the degradation of pollutants, hydrogen production and carbon dioxide reduction are discussed. The research directions of barrier height, product control and the reusing of catalyst are proposed. The unique property of Schottky photocatalyst can lead to a research hot spot and more applications are also expected in the near future.
Key words:  Schottky    photo-catalytic    degradation    waste water
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  O643.3  
  TB34  
基金资助: *江西省教育厅科学技术研究项目(GJJ150630); 江西省研究生创新专项资金项目(YC2016-B076); 赣州市工业技术创新项目(2015); 江西理工大学优秀博士学位论文培育计划项目(YB2016006); 江西理工大学科研基金(NSFJ2015-G08); 江西理工大学大学生创新训练项目(XZG-15-08-08)
通讯作者:  廖春发:男,1965年生,博士,教授,主要从事钨、稀土、银等稀贵金属分离及其二次资源的绿色高效利用 E-mail:liaochfa@163.com 余长林:通讯作者,男,1974年生,博士,教授,主要从事纳米催化材料与光催化技术及其应用研究 E-mail:yuchanglinjx@163.com   
作者简介:  樊启哲:男,1987年生,博士研究生,讲师,主要从事稀土材料光催化研究 E-mail:lyfxf210@126.com
引用本文:    
樊启哲, 钟立钦, 冯庐平, 余长林, 廖春发. 肖特基型光催化剂研究进展*[J]. CLDB, 2017, 31(9): 106-111.
FAN Qizhe, ZHONG Liqin, FENG Luping, YU Changlin, LIAO Chunfa. New Development of Schottky Type Photo-catalyst. Materials Reports, 2017, 31(9): 106-111.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.014  或          https://www.mater-rep.com/CN/Y2017/V31/I9/106
[1] Christopher P, Xin H L, et al.Singular characteristics and unique chemical bond activation mechanisms of photocataly-tic reactions on plasmonic nanostructures[J]. Nat Mater,2012,11(12):1044.
[2] Sun D F, Wang K, Xu Z J,et al.Synthesis and photocatalytic activity of sulfate modified Nd-doped TiO2 under visible light irradiation[J]. J Rare Earths,2015,33(5):491.
[3] Murdoch M, Waterhouse G I N, et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles[J]. Nat Chem,2011,3(6):489.
[4] Xing M Y, Li X, Zhang J L.Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene compo-site[J]. Scientific Reports,2014,4(4):5493.
[5] Pincella F, Isozaki K, Miki K.A visible light-driven plasmonic photocatalyst[J]. Light Sci Appl,2014,3(1):110.
[6] Cao Y H, Li Q Y, Li C,et al.Surface heterojunction between (001) and (101) facets of ultrafine anatase TiO2, nanocrystals for highly efficient photoreduction CO2 to CH4[J]. Appl Catal B:Environ,2016,198:378.
[7] Fan Q Z, Yu C L,Li J D,et al.WO3/ZnS heterostructured photocatalysts prepared by grinding-calcination method and their photoca-talytic performance[J]. Chinese J Nonferrous Metals,2016,26(1):118(in Chinese).樊启哲, 余长林, 李家德,等.研磨-煅烧法制备WO3/ZnS异质结光催化剂及其光催化性能[J].中国有色金属学报,2016,26(1):118.
[8] Pan S H, Mo D.Interfaces of metal semiconductor contacts and schottky barrier[J].Prog Phys,1985,5(1):66(in Chinese).潘士宏, 莫党. 金属-半导体界面与肖特基势垒[J].物理学进展,1985,5(1):66.
[9] Jia Y C, Xiao P, Li D X, et al.Research progresses in preparation and application of TiO2 nanotube arrays composites[J]. Chem Ind Eng Prog,2011,30(11):2443(in Chinese).贾祎超, 肖鹏, 李东仙,等. TiO2纳米管复合列阵材料的制备及其应用研究进展[J].化工进展,2011,30(11):2443.
[10] Yu H T, Quan X.Nano-heterojunction photocatalytic materials in environmental pollution controlling[J].Prog Chem,2009(Z1):406(in Chinese).于洪涛, 全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009(Z1):406.
[11] Shi L P, Liu C, Yin H B,et al.Preparation and visible light photocatalyti activties of hollow nanospheres of Ag+/Ag-TiO2[J]. Chinese J Mater Res,2014(11):865(in Chinese).石莉萍, 刘纯, 殷恒波,等. Ag+/Ag-TiO2纳米空心球制备及其可见光催化性能[J].材料研究学报,2014(11):865.
[12] Gomathi Devi L, Kavitha R.A review on plasmonic metal-TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system[J]. Appl Surf Sci,2016,360:601.
[13] Ni Z, Sun Y, Zhang Y,et al.Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review[J]. Appl Surf Sci,2016,365:314.
[14] Huang Q, Gao T, Niu F,et al.Preparation and enhanced visible-light driven photocatalytic properties of Au-loaded TiO2 nanotube arrays[J]. Superlattices Microstruct,2014,75:890.
[15] Gao S, Wang W, Ni Y,et al.Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface he-terojunction[J]. J Alloys Compd,2015,647:981.
[16] Wan X, Liang X Y, et al.Morphology controlled syntheses of Cu-doped ZnO, tubular Zn(Cu)O and Ag decorated tubular Zn(Cu)O microcrystals for photocatalysis[J]. Chem Eng J,2015,272:58.
[17] Di J, Xia J X, Ji M X,et al.New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications[J]. Appl Catal B: Environ,2016,188:376.
[18] Wang H H, Faria J L, Dong S J,et al.Mesoporous Au/TiO2 composites preparation, characterization, and photocatalytic properties[J]. Mater Sci Eng B,2012,177(11):913.
[19] Wu X Q, Cai J B, Li S X,et al.Au@Cu2O stellated polytope with core-shelled nanostructure for high- performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes[J]. J Colloid Interface Sci,2016,469:138.
[20] Romero-Gomez P, et al.Enhancement of visible light-induced surface photo-activity of nanostructured N-TiO2 thin films modified by ion implantation[J]. Chem Phys Lett,2013,582:95.
[21] Chang C W, Wu H T, Huang S H,et al.Single-crystalline heterostructure of ZnO nanowire arrays on large Ag microplates and its photocatalytic activity[J]. Acta Mater,2013,61(18):6993.
[22] Tian J, Li J, Wei N,et al.Ru nanoparticles decorated TiO2 nanobelts: A heterostructure towards enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol[J]. Ceram Int,2016,42(1):1611.
[23] Xie W, Qin N, Li B J,et al.Enhanced visible-light catalytic activity of Au nanoparticles loaded c-axis oriented Bi2VO5.5 porous thin films[J]. Ceram Int,2015,41(7):1.
[24] Li H Y, Wu T S, Cai B,et al.Efficiently photocatalytic reduction of carcinogenic contaminant Cr(Ⅵ) upon robust AgCl: Ag hollow nanocrystals[J]. Appl Catal B: Environ,2015,164(17):344.
[25] Lei M, Wu W, Sun L L,et al.Controlled preparation of hollow SnO2@M (M=Au,Ag) heterostructures through template-assist method for enhanced photocatalysis[J]. Colloids Surf A: Physicochem Eng Aspects,2015,482:276.
[26] Liang H F, et al.α-Fe2O3/Pt hybrid nanorings and their enhanced photocatalytic activities[J]. Ceram Int,2014, 40(4):5653.
[27] Olteanu N L, Rogozea E A, Popescu S A,et al.“One-pot” synthesis of Au-ZnO-SiO2 nanostructures for sunlight photodegradation[J]. J Mol Catal A: Chem,2016,414:148.
[28] Zhang X H, Wang L L, Liu C B,et al.A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol[J]. J Hazard Mater,2016,313:244.
[29] Jian L, Cai D D, Su G P,et al.The accelerating effect of silver ion on the degradation of methyl orange in Cu2O system[J]. Appl Catal A: Gen,2016,512:74.
[30] Liu H R, Hu Y C, et al.Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under vi-sible light and UV irradiation[J]. Appl Surf Sci,2015,355:644.
[31] Wan J, Liu E Z, et al.In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron with exposed {111} facets for high visible-light photocatalytic activity and stability[J]. Ceram Int,2015,41(5):6933.
[32] Zhang X C, et al.Simple hydrolysis-photodeposition route to synthesize Ag/BiOCl0.5Br0.5 composites with highly enhanced visible-light photocatalytic properties[J]. Sep Purif Technol,2015,154:68.
[33] Gomathi Devi L, Kavitha R, Nagaraj B.Bulk and surface modification of TiO2 with sulfur and silver: Synergetic effects of dual surface modification in the enhancement of photocatalytic activity[J]. Mater Sci Semicond Processing,2015,40:832.
[34] Zhang P F, Li X W, Wu X K,et al.Influence of In3+-doping and Ag0-depositing on the visible-light-induced photocatalytic activity of TiO2[J]. J Alloys Compd,2016,673:405.
[35] Chen J B, Che H N, Huang K,et al.Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants[J]. Appl Catal B: Environ,2016,192:134.
[36] Lu Y, Zhao K, Zhao Y H,et al.Bi2WO6/TiO2/Pt nanojunction system: A UV-vis light responsive photocatalyst with high photocatalytic performance[J]. Colloids Surf A: Physicochem Eng Aspects,2015,481:252.
[37] Li J L, Chen W Z, Yu H L,et al.Contact potential barriers and characterization of Ag-doped composite TiO2 nanotubes[J]. J Phys Chem Solids,2014,75(4):505.
[38] Wang W, Lu C H, Ni Y R,et al.Fabrication of CNTs and GP/AuGP modified TiO2 photocatalyst with two-channel electron conduction path for significantly enhanced photocatalytic activity[J]. Appl Catal B: Environ,2013,129:606.
[39] Dai Y M, Lu C Y, Pan Y T.Evaluating the photocatalytic activity of Pt/TNT film catalyst[J]. Ceram Int,2016,42(7):7993.
[40] Gong X Z, Teoh W Y.Modulating charge transport in semiconductor photocatalysts by spatial deposition of reduced graphene oxide and platinum[J]. J Catal,2015,332:101.
[41] Xu Y L, Zhong D J, Jia J P,et al.Dual slant-placed electrodes thin-film photocatalytic reactor: Enhanced dye degradation efficiency by self-generated electric field[J]. Chem Eng J,2013,225:138.
[42] Cheng X W, Liu H L, Chen Q H,et al. Preparation and characteri-zation of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac[J]. J Hazard Mater,2013,254-255(1):141.
[43] Wang X N, Long R, Liu D,et al.Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays[J]. Nano Energy,2016,24:87.
[44] Huang B S, Su E C, Wey M Y.Design of a Pt/TiO2-xNx/SrTiO3 triplejunction for effective photocatalytic H2 production under solar light irradiation[J]. Chem Eng J,2013,223:854.
[45] Dimitrijevic N M, Vijayan B K, Poluektov O G,et al.Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania[J]. J Am Chem Soc,2011,133(11):3964.
[46] Wang Q L, Dong P M, Huang Z F,et al.Synthesis of Ag or Pt na-noparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4[J]. Chem Phys Lett,2015,639:11.
[47] Li H L, Wu X Y, Wang J, et al.Enhanced activity of Ag-MgO-TiO2 catalyst for photocatalytic conversion of CO2 and H2O into CH4[J]. Int J Hydrogen Energy,2015,41(20):8479.
[48] Li Y H, Gong J, He G H,et al.Enhancement of photoresponse and UV-assisted gas sensing with Au decorated ZnO nanofibers[J]. Mater Chem Phys,2012,134(2-3):1172.
[49] Chidambaram S, Pari B, Kasi N, et al.ZnO/Ag heterostructures embedded in Fe3O4 nanoparticles for magnetically recoverable photocatalysis[J]. J Alloys Compd,2016,665:404.
[50] Wu S K, Shen X P, Zhu G X.Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity[J]. Appl Catal B: Environ,2016,184:328.
[51] Leong K H, Gan B L, et al.Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds[J]. Appl Surf Sci,2014,319(1):128.
[52] Zhang H, Xuan J, Xu H,et al.A theoretical study on photocatalytic fuel cell[J]. Energy Procedia,2014,61:246.
[53] Yu Y G, Chen G, Zhou Y S,et al.Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review[J]. J Rare Earths,2015,33(5):453.
[1] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[2] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[3] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[4] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[5] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[6] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[7] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[8] 齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
[9] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[10] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[11] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[12] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[13] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[14] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[15] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed