Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 96-105    https://doi.org/10.11896/j.issn.1005-023X.2017.03.016
  新材料新技术 |
沥青混合料汉堡车辙试验评价研究综述*
张争奇1, 罗要飞1, 张苛2
1 长安大学公路学院,特殊地区公路工程教育部重点实验室, 西安 710064;
2 阜阳师范学院信息工程学院, 阜阳 236041;
Review on Hamburg Wheel-track Device Evaluation of Asphalt Mixture
ZHANG Zhengqi1, LUO Yaofei1, ZHANG Ke2
1 Key Laboratory for Special Area Highway Engineering of Ministry of Education, School of Highway, Chang’ an University, Xi’an 710064;
2 College of Information Engineering, Fuyang Normal University, Fuyang 236041;
下载:  全 文 ( PDF ) ( 1355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为规范使用汉堡车辙试验(Hamburg wheel-track device, HWTD)评价沥青混合料的高温抗车辙性能和水稳性能,科学地指导试验操作程序、相关数据处理和评价指标计算等,总结和探讨了HWTD相关的试验条件、圆柱型试件影响因素、车辙深度预测模型、点位选取原则、评价指标的获取与计算方法等的现状和存在的问题,并展望了进一步的研究方向。研究结果表明,试验条件直接影响着混合料的性能评价,其试验温度、评价标准和荷载作用次数等的确定与选取应充分考虑沥青等级和环境气候的差异;并基于圆柱型试件拼接缝对混合料受力特性和车辙深度点位选取的影响,提出了相应的改善措施。相关评价指标计算模型的引入弥补了现有个别评价指标求取不明确的缺陷,为混合料性能的科学评价和区分提供指导,也为我国相关HWTD规范的制定奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张争奇
罗要飞
张苛
关键词:  道路工程  沥青混合料  汉堡车辙试验  车辙深度  作用次数    
Abstract: To standardize the evaluation of rutting resistance and water stability of asphalt mixture by using Hamburg wheel-track device (HWTD) and scientifically direct test operation, relevant data processing and calculation of evaluation indexes, the current situation and existing problems of HWTD such as relevant test condition, influence factor of cylindrical specimen, prediction model of rutting depth, selecting principle of spotting and calculational method of evaluation indexes were discussed and explored, and also the future research directions were further determined.The results show that the performance assessment of mixture is directly affected by test condition, differences among asphalts and climates should be taken into account when deciding testing temperature, evaluation criterion, and loading times. Considering the effect of gap of cylindrical specimen on mechanical characteristics and selected spotting, corresponding improving measures are proposed. Furthermore the relevant mathematics models of evaluation index make up the defect of undefined existential evaluation indexes, provide guidance for scientific evaluation of performance and also lay the foundation of setting evaluation norms of HWTD.
Key words:  road engineering    asphalt mixture    Hamburg wheel-track device    rutting depth    loading times
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  U416  
  TB302  
基金资助: *陕西省交通科技项目(2014-01K)
作者简介:  张争奇:男,1967年生,博士,教授,博士研究生导师,研究方向为路基路面工程 E-mail:z_zhengqi@126.com 罗要飞:通讯作者,男,1986年生,博士研究生,研究方向为路基路面与材料 E-mail:hpulyf@163.com
引用本文:    
张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
ZHANG Zhengqi, LUO Yaofei, ZHANG Ke. Review on Hamburg Wheel-track Device Evaluation of Asphalt Mixture. Materials Reports, 2017, 31(3): 96-105.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.016  或          https://www.mater-rep.com/CN/Y2017/V31/I3/96
1 AASHTO T324-2014. Hamburg wheel-track testing of compacted hot-mix asphalt (HMA) [S]. Washington: American Association of State Highway and Transportation Officials,2014.
2 Li Honghua. Mechanism analysis on rutting in asphalt pavement and study on rutting test [D].Xi’an: Chang’ an University,2008(in Chinese).
李洪华.沥青路面车辙成因分析及车辙试验研究[D].西安:长安大学,2008.
3 Chen Kai. Study on domestic rutting test and Hamburg wheel trac-king test[D].Xi’an: Chang’an University,2008(in Chinese).
陈凯.我国车辙试验与汉堡车辙试验对比研究[D]. 西安:长安大学,2008.
4 Louay N Mohammad, Mostafa A Elseifi, Amar Raghavendra, et al. Hamburg wheel-track test equipment requirements and improvements to AASHTO T324[R]. Washington: Transportation Research Board,2015.
5 MT 334-110-090211. Method of test for Hamburg wheel track testing of compacted bituminous mixtures[S]. Helena: Montana Department of Transportation,2011.
6 CP-L 5112. Hamburg wheel-track testing of compacted bituminous mixtures[S]. Denver: Colorado Department of Transportation,2009.
7 Section 39-12 1.01D. Method of test for Hamburg wheel-track testing of compacted HMA[S]. Salt Lake City: Utah Department of Transportation,2011.
8 TEX-242-F. Test procedure for Hamburg wheel-tracking test[S].Austin: Texas Department of Transportation,2009.
9 OHD L-55. Method of test for Hamburg rut testing of compacted hot-mix asphalt (HMA) [S]. Oklahoma : Oklahoma Department of Transportation,2014.
10 WisDOT modified test procedure for AASHTO T-324[S]. Wisconsin: Wisconsin State Department of Transportation,2014.
11 Modified AASHTO T-324 specification[S]. California: California Department of Transportation,2014.
12 Section 39-1.01D. Method of test for Hamburg wheel track testing of compacted HMA[S]. Sacramento: California Department of Transportation,2011.
13 L.M.319. Moisture sensitivity testing of HMA[S]. Ames: Iowa Department of Transportation,2013.
14 Abdulaziz Alossta. Evaluation of warm mix asphalt versus conventional hot mix asphalt for field and laboratory-compacted specimens [D].Tempe: Arizona State University,2011.
15 Qi Lin, Sha Aimin, Chen Kai. Research on the water stability of asphalt mixture based on the HWTD[J].J Wuhan University of Technology,2009,31(8):42(in Chinese).
齐琳,沙爱民,陈凯.沥青混合料水稳定性汉堡车辙试验研究[J].武汉理工大学学报,2009,31(8):42.
16 Zhu Haoran, Yang Jun, Shi Xiao, et al. Relationship between repeated triaxial test and Hambury wheel tracking text on asphalt mixtures[J]. J Southeast University,2010,26(1):117.
17 Guo Dedong, Xu Hongmei, Li Xiaogang. Study on application of porous andesite in asphalt pavement[J].J Shandong University: Eng Sci,2010,40(3):133(in Chinese).
郭德栋,许宏妹,李小刚.多孔安山岩在沥青路面中的应用研究[J].山东大学学报:工学版,2010,40(3):133.
18 Li Peilong, Zhang Zhengqi, Li Honghua, et al. Methods of Hamburg wheel tracking tests for asphalt mixture[J].J Traffic Transportation Eng,2010,10(2):30(in Chinese).
栗培龙,张争奇,李洪华,等.沥青混合料汉堡车辙试验方法[J].交通运输工程学报,2010,10(2):30.
19 Ibrahim Sel, Yetkin Yildirim, Hacer Bilir Ozhan. Effect of test temperature on Hamburg wheel-tracking device testing[J].J Mater Civil Eng,2014,26(8):04014037.
20 Yetkin Yildirim, Priyantha W Jayawickrama, M Shabbir Hossain, et al. Hamburg wheel-tracking database analysis[R]. Austin:Texas Transportation Institute,2007.
21 Lubinda F Walubita, Abu NM Faruk, Sang I Lee, et al. HMA shear resistance, permanent deformation, and rutting tests for Texas mixes: Final Year-2 Report[R]. Austin: Texas A&M Transportation Institute,2014.
22 Lubinda F Walubita, Abu N M Faruk, Jun Zhang, et al. The Hamburg rutting test-effects of HMA sample sitting time and test temperature variation[J].Constr Build Mater,2016,108:22.
23 Jason Nielson. Development of a testing temperature to be used with the Hamburg wheel tracking device on asphalt mixtures[D]. Salt Lake City: The University of Utah,2010.
24 JTG E20-2011.公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011.
25 Emad Kassem, Eyad Masad, Robert Lytto, et al. Influence of air voids on mechanical properties of asphalt mixture. [J]. Road Mater Pavement Des,2011,12(3):493.
26 Li Peilong, Li Honghua ,Zhang Zhengqi, et al. Research on influencing factors and prediction model of rutting process for asphalt mixture[J].J Wuhan University of Technology,2011,33(7):57(in Chinese).
栗培龙,李洪华,张争奇,等.沥青混合料车辙进程影响因素及预估模型研究[J].武汉理工大学学报,2011,33(7):57.
27 Kevin D Hall, Stacy G Williams. Acquisition and evaluation of Hamburg wheel-tracking device[R]. Arkansas: Civil Engineering University of Arkansas,1999.
28 Joseph Herbert Podolsky, Ashley Buss, et al. The rutting and stripping resistance of warm and hot mix asphalt using bio-additives [J]. Constr Build Mater,2016,112:128.
29 Jun Zhang, Lubinda F Walubita, Abu N M Faruk, et al. Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance-A laboratory study [J]. Constr Build Mater,2015,94:218.
30 Lubinda F Walubita, Jun Zhang, Gautam Das, et al. Hot-mix asphalt permanent deformation evaluated by Hamburg wheel tracking, dynamic modulus, and repeated load tests[J].Transportation Research Record,2012(2296):45.
31 Minkyum Kim, Louay N Mohammad, Harshavardhan Challa. A simplified performance-based specification for asphalt pavement [J]. Road Mater Pavement Des,2015,16(2):168.
32 Fujie Zhou, Sheng Hu, Tom Scullion. Integrated asphalt (overlay) mixture design, balancing rutting and cracking requirements[R]. Austin: Texas A&M Transportation Institute,2005.
33 Sergey Grebenschikov, Jorge A Prozzi. Enhancing mechanistic-empirical pavement design guide rutting-performance predictions with Hamburg wheel-tracking results [J].Transportation Res Record,2011(2226):111.
34 Zhang Zhengqi, Wang Zhixiang, Li Zhihong, et al. Durability of asphalt pavement under salty and humid environment[J].J Beijing University of Technology,2015,41(9):1365(in Chinese).
张争奇,王志祥,李志宏,等.含盐高湿环境下沥青混合料耐久性[J].北京工业大学学报,2015,41(9):1365.
35 Zhang Zhengqi, Shang Tongyang, Kong Hui, et al. Anti-rutting performance evaluation of asphalt structure layers with samples cored at site[J]. China J Highway Transport,2012,25(5):31(in Chinese).
张争奇,尚同羊,孔慧,等.基于现场钻芯取样的沥青结构层抗车辙性能评价方法[J].中国公路学报,2012,25(5):31.
36 Bor-Wen Tsai, Erdem Coleri, John T Harvey, et al. Evaluation of AASHTO 324 Hamburg-wheel track device test[J]. Constr Build Mater,2016,114:248.
37 Haleh Azari, Alaeddin Mohseni. Precision of the Hamburg wheel-track test [J].Transportation Res Record,2015(2506):137.
38 Haleh Azari. Precision estimates of AASHTO T324,“Hamburg wheel-track testing of compacted hot mix asphalt[R]. Washington: Transportation Research Board,2014.
39 Cui Xinzhuang, Zhang Jiong, Zhang Na, et al. Laboratory simulation tests of effect of mechanical damage on moisture damage evolution in hot-mix asphalt pavement[J].Int J Pavement Eng,2015,8(16):699.
40 Fan Yin, Edith Arambula, Robert Lytton, et al. Novel method for moisture susceptibility and rutting evaluation using Hamburg wheel tracking test[J].Transportation Res Record,2014(2446):1.
41 Zhang Ke, Zhang Zhengqi. Test method and index of the influence of anti-striping agents on water stability of asphalt mixture [J]. J Hefei University of Technology:Nat Sci Ed,2015,38(7):955(in Chinese).
张苛,张争奇.抗剥落剂对沥青混合料水稳定性影响的试验方法与指标研究[J].合肥工业大学学报:自然科学版,2015,38(7):955.
42 Li Yanwei, Fan Huanchi, Chen Xiaolong, et al. Compaction effect evaluation parameter of asphalt pavement[J].J Chang’an University: Nat Sci Edi,2012,32(3):34(in Chinese).
李彦伟,范换持,陈小龙,等.沥青路面压实效果评价指标[J].长安大学学报:自然科学版,2012,32(3):34.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[6] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[7] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[8] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[9] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[10] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[11] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[12] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[13] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[14] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[15] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed