Research Progress in Immobilization of Sr and Cs by Mineral Materials
WANG Lan1, HOU Chenxi1, FAN Long1, XIE Yi1, LU Xirui1,2
1 Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010; 2 China Academy of Engineering Physics, Mianyang 621900;
Abstract: The radionuclides strontium and cesium have a long half-life and large biological harmfulness and other characteristics, and become one of the key point on the safety of radioactive waste treatment disposal, and the removal of them by mineral has become a research hotspot. This paper introduces the characteristics and harms of the strontium and cesium. The research progress of four typical potential mineral materials in this field including hollandite, apatite, perovskite and pollucite are reviewed in detail. The status and development of strontium and cesium immobilization with mineral material are discussed. Finally, the future development trends of strontium and cesium incorporated by mineral materials are also mentioned.
王兰, 侯晨曦, 樊龙, 谢忆, 卢喜瑞. 矿物固化含Sr、Cs放射性废物研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 106-111.
WANG Lan, HOU Chenxi, FAN Long, XIE Yi, LU Xirui. Research Progress in Immobilization of Sr and Cs by Mineral Materials. Materials Reports, 2017, 31(3): 106-111.
1 Uggla Y. Risk and safety analysis in long-term perspective[J]. Futures,2004,36(5):549. 2 El-Ghonemy H, Watts L, Fowler L. Treatment of uncertainty and developing conceptual models for environmental risk assessments and radioactive waste disposal safety cases[J]. Environ Int,2005,31(1):89. 3 Broden K, Olsson G. Final disposal possibilities of radioactive waste components from ITER [J]. Fusion Eng Des,2003,69(4):695. 4 姜胜阶,任凤仪.核燃料后处理工学[M].北京:原子能出版社,1995:320. 5 Chen S,Li Y X. Research actualities on high-level waste forms[J]. Mater Rev,2005,19(11):53(in Chinese). 陈松,李玉香.高放废物固化基材研究现状 [J].材料导报,2005,19(11):53. 6 Che C X, Teng Y C, Gui Q. Research and application status of ra-dioactive waste solidification[J]. Mater Rev,2006,20(2):94(in Chinese). 车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006,20(2):94. 7 Riley B J, Vienna J D, Strachan D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: A review[J]. J Nucl Mater,2016,470:307. 8 Krausova K, Gautron L, Karnis A, et al. Glass ceramics and mine-ral materials for the immobilization of lead and cadmium[J]. Ceram Int,2016,42(7):8779. 9 Wagh A S, Sayenko S Y, Shkuropatenko V A, et al. Experimental study on cesium immobilization in struvite structures[J]. J Hazard Mater,2016,302:241. 10 Gong H F, Ma J P, Li G P, et al. Present research on synroc forms[J]. J Gansu Sci,2009,21(4):150(in Chinese). 龚恒风,马俊平,李公平,等.人造岩石固化体的研究现状[J].甘肃科学学报,2009,21(4):150. 11 Ringwood A E, Kesson S E, Ware N G, et al. Immobilisation of high level nuclear reactor wastes in SYNROC[J]. Nature,1979,278(5701):219. 12 Chappell A. The limitations of using 137Cs for estimating soil redistribution in semi-arid environments[J]. Geomorphology,1999,29(1):135. 13 Ojovan M I, Lee W E. An introduction to nuclear waste immobilization[J]. Mater Today,2006,9(3):55. 14 Entry J A, Vance N C, Hamilton M A, et al. Phytoremediation of soil contaminated with low concentrations of radionuclides[J]. Water Air Soil Pollution,1996,88(1-2):167. 15 Tan H B, Li Y X. Summary of solidification measures of radioactive waste[J]. Yunnan Environ Sci,2004,23(4):1(in Chinese). 谭宏斌,李玉香.放射性废物固化方法综述[J].云南环境科学,2004,23(4):1. 16 Zagrai M, Rus L, Rada S, et al. Lead metallic-lead dioxide glasses as alternative of immobilization of the radioactive wastes[J]. J Non-Cryst Solids,2014,405:129. 17 Arod J. Bituminization of radioactive wastes: Safety studies[J]. Nucl Chem Waste Manag,1982,3(3):179. 18 Olson R A, Tennis P D, Bonen D, et al. Early containment of high-alkaline solution simulating low-level radioactive waste in blended cement[J]. J Hazard Mater,1997,52(2):223. 19 Micheline M, Siham K, Emmanuel G. Physicochemical equilibria of cement-based materials in aggressive environments-experiment and modeling[J]. Cem Concr Res,2004,34(9):1569. 20 Wu L, Schliesser J, Woodfield B F, et al. Heat capacities, standard entropies and Gibbs energies of Sr-, Rb-and Cs-substituted barium aluminotitanate hollandites[J].J Chem Thermodynamics,2016,93:1. 21 Aubin-Chevaldonnet V, Caurant D, Dannoux A, et al. Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M=Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioa-ctive cesium immobilization[J]. J Nucl Mater,2007,366:137. 22 Teng Y C, Zhou S G, Xiao Z X, et al. Chemical solid-soluted content of strontiumin solid solution of hollandite[J]. J Xi’an Jiaotong University,2005,39(1):100(in Chinese). 滕元成,周时光,肖正学,等.Sr 在碱硬锰矿固溶体中的化学固溶量研究[J]. 西安交通大学学报,2005,39(1):100. 23 Zhao Y L, Li B J, Zhou H, et al. Immobizition of simulated cesium-137 waste in synroc[J]. J Nuclear Radiochem,2005,27(3):152(in Chinese). 赵昱龙,李宝军,周慧,等.人造岩石固化模拟137Cs 废物的研究[J].核化学与放射化学,2005,27(3):152. 24 Teng Y C, Zhou S G, Shi Z K, et al. Study on solid-dissolved ce-sium in the lattice of hollandite[J]. Nucl Techn,2006,29(6):476(in Chinese). 滕元成,周时光,石正坤,等.碱硬锰矿晶平格固化Cs的研究[J].核技术,2006,29(6):476. 25 Xu H, Wu L, Zhu J, et al. Synthesis, characterization and thermochemistry of Cs-, Rb-and Sr-substituted barium aluminium titanate hollandites[J]. J Nucl Mater,2015,459:70. 26 Carter M L, Vance E R, Mitchell D R G, et al. Fabrication, characterization, and leach testing of hollandite, (Ba, Cs)(Al, Ti)2Ti6O16[J]. J Mater Res,2002,17(10):2578. 27 Suzuki-Muresan T, Vandenborre J, Abdelouas A, et al. Studies of (Cs, Ba)-hollandite dissolution under gamma irradiation at 95 ℃ and at pH 2.5, 4.4 and 8.6[J]. J Nucl Mater,2011,419(1):281. 28 Amoroso J, Marra J, Conradson S D, et al. Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A= Cr, Fe, Al[J]. J Alloys Compd,2014,584:590. 29 Abdelouas A, Utsunomiya S, Suzuki T, et al. Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77-Ti5.90O16[J]. Am Mineralogist,2008,93(1):241. 30 Chen Z Y, Zeng L S, Meng L J. Mineralogy and trace elemental geo-chemistry of apatite in Sulu eclogites[J]. Acta Petrol Sin,2009(7):1663(in Chinese). 陈振宇,曾令森,孟丽娟.苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化[J]. 岩石学报,2009(7):1663. 31 潘兆橹.结晶学及矿物学[M].北京:地质出版社,1984:11. 32 Zeng L S, Chen J, Gao L E, et al. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan Gneiss Domes, southern Tibet[J]. Acta Petrol Sin,2012,28(9):2981(in Chinese). 曾令森,陈晶,高利娥,等.藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J].岩石学报,2012,28(9):2981. 33 Liu Y, Peng M S. Advances in the researches on structural substitution of apatite[J]. Acta Petrol Miner,2003,22(4):413(in Chinese). 刘羽,彭明生.磷灰石结构替换的研究进展[J]. 岩石矿物学杂志,2003,22(4):413. 34 Liu Y. Mineralogical spectroscopy of apatites[D]. Guangzhou: Zhongshan University,2003(in Chinese). 刘羽.磷灰石的矿物谱学研究[D].广州:中山大学,2003. 35 Xiang G H. Preparation and performance study of monzite-apatite glass-ceramic waste forms[D]. Mianyang: Southwest University of Science and Technology,2012(in Chinese). 向光华.独居石-磷灰石玻璃陶瓷固化体的制备与性能研究[D].绵阳:西南科技大学,2012. 36 Kumar S P, Buvaneswari G. Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies[J]. Mater Res Bull,2013,48(2):324. 37 Boughzala K, Bouzouita K, Salem E B, et al. Synthesis and characterization of strontium-lanthanum apatites[J]. Mater Res Bull,2007,42(7):1221. 38 Boughzala K, Gmati N, Bouzouita K, et al. étude structurale de britholite au césium Sr7La2Cs(PO4)5(SiO4)F2[J]. Comptes Rendus Chim,2010,13(11):1377. 39 Zhao Y L. The study of synroc for simulated nuclide waste90 Sr and 137Cs immobilization[D]. Beijing: China Institute of Atomic Energy,2005(in Chinese). 赵昱龙.人造岩石固化模拟90 Sr, 137Cs核素废物研究[D].北京:中国原子能科学研究院,2005. 40 Wu Q, Zhao B Y. Preparation, structure and properties of perovskite type strontium titanate[J]. New Chem Mater,2002,30(8):17(in Chinese). 吴庆,赵斌元.钙钛矿型钛酸锶的制备,结构与性能[J].化工新型材料,2002,30(8):17. 41 Navrotsky A, Weidner D J. Perovskite: A structure of great interest to geophysics and materials science[M]. Washington DC: American Geophysical Union Geophysical Monograph Series,1989. 42 Zoltai T, Stout J H. Mineralogy: Concepts and principles[M]. Minneapolis, MN: Burgess Publishing Company,1984. 43 Krainyukova N V, Butskii V V. RHEED study of stepped (001) surface of strontium titanate[J]. Appl Surf Sci,2004,235(1):32. 44 Mahadik P S, Sengupta P, Halder R, et al. Perovskite-Ni compo-site: A potential route for management of radioactive metallic waste[J]. J Hazard Mater,2015,287:207. 45 Zhang R Z. Self-propagation high-temperature synthesis for radiocative waste immobilization[D]. Beijing: University of Science and Technology Beijing,2005(in Chinese). 张瑞珠.利用自蔓延高温合成技术固化放射性废物[D].北京:北京科技大学,2005. 46 Zhang R Z, Guo Z M, Jia G Y. Immobilization of nuclear waste strontia by perovskite[J]. J Chinese Ceram Soc,2005,33(8):1045(in Chinese). 张瑞珠,郭志猛,贾光耀.用钙钛矿固化核素废物锶[J].硅酸盐学报,2005,33(8):1045. 47 Zhang R Z, Zhao J H, Guo Z M. Synthesis of SrTiO3 by double-SHS for immobilization of high level radioactive waste[J]. Chinese J Rare Metals,2009(1):66 (in Chinese). 张瑞珠,赵军华,郭志猛.二次自蔓延高温合成 SrTiO3固化高放废物[J].稀有金属,2009(1):66. 48 Liang P Y, Chen Q S, Ma H, et al. High containment technology for immobilizing simulated radioactive element Sr[J]. J Ceram,2011,32(2):197(in Chinese). 梁磐仪,陈泉水,马辉,等.高包容模拟放射性核素 Sr 固化技术研究[J].陶瓷学报,2011,32(2):197. 49 Jaffe J E, Van Ginhoven R M, Jiang W. Interstitial and substitutional zirconium in SrTiO3[J]. Comput Mater Sci,2012,53(1):153. 50 Wang S, Tang M, Brinkman K S, et al. Ion-irradiation induced reduction in Sr2Fe1.5Mo0.5O6-δ perovskite[J]. Nucl Instruments Methods Phys Res Section B: Beam Interactions with Materials and Atoms,2014,326:298. 51 Bao W, Xu S, Li L, et al. Solidification of Sr-containing stripping solutions in titanate ceramics[J]. J Nucl Mater,2002,301(2):237. 52 Li F, Xia X, Li Q, et al. The preparation and oxygen permeability of calcium-doped Ba-Sr-Ca-Co-Fe-O perovskite material[J]. Ceram Int,2015,41(9):12295. 53 Hu H, Wang R C, Zhang A C, et al. Cs-enriched minerals and their significance on nuclear waste disposal[J]. Acta Geol Sin,2007,80(11):1779(in Chinese). 胡欢,王汝成,张爱铖,等.富铯矿物及其在核废物地质处置上的意义[J].地质学报,2007,80(11):1779. 54 Fang J D, Sun S Z, Xu J F, et al. Preparation and characterization of 137Cs-pollucite[J]. J Nucl Radiochem,1984,6(1):31(in Chinese). 方吉东,孙树正,许金凤,等.137Cs-铯榴石化合物的制备和性质研究[J].核化学与放射化学,1984,6(1):31. 55 Yanase I, Ishikawa Y, Matsuura S, et al. Effects of PMMA on po-rous structure of pollucite[J]. J Eur Ceram Soc,2006,26(4):475. 56 Yanase I, Saito Y, Kobayashi H. Synthesis and thermal expansion of (V, P, Nb)-replaced pollucite[J]. Ceram Int,2012,38(1):811. 57 Jing Z, Hao W, He X, et al. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium[J]. J Hazard Mater,2016,306:220. 58 Hoyle S L, Grutzeck M W. Incorporation of cesium by hydrating calcium aluminosilicates[J]. J Am Ceram Soc,1989,72(10):1938. 59 Hess N J, Espinosa F J, Conradson S D, et al. Beta radiation effects in 137 Cs-substituted pollucite[J]. J Nucl Mater,2000,281(1):22. 60 Anchell J L, White J C, Thompson M R, et al. An ab initio periodic hartree-fock study of group IA cations in ANA-type zeolites[J]. J Phys Chem,1994,98(16):4463.