Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 174-178    https://doi.org/10.11896/j.issn.1005-023X.2017.024.034
  材料研究 |
聚晶金刚石复合片表面裂纹视觉检测技术研究
李慧慧1,2,郭 桦1,2,陈 琛1,2,黄莹祥1,2
1 华侨大学脆性材料加工技术教育部工程研究中心,厦门 361021;
2 华侨大学制造工程研究院, 厦门 361021
Vision Detection Technology Research for Surface Crack of Polycrystalline Diamond Compact
LI Huihui1,2, GUO Hua 1,2, CHEN Chen 1,2, HUANG Yingxiang 1,2
1 Engineering Research Center for Machining of Brittle Materials of Ministry of Education, Huaqiao University, Xiamen 361021;
2 Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021
下载:  全 文 ( PDF ) ( 672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用计算机视觉检测技术提取出表面缺陷特征量,完成聚晶金刚石复合片表面裂纹缺陷检测。首先,根据聚晶金刚石复合片表面特性,研究合适的光源照明系统。然后,提出一种基于直方图投影梯度极值的局部边界提取方法,将感兴趣区域进行提取。在此基础上,采用图像滤波、阈值分割的方法实现裂纹的准确提取。最后,通过计算裂纹连通域的圆形度和长宽比进行裂纹识别。实验结果表明,本方法可有效地对聚晶金刚石复合片表面裂纹缺陷进行检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧慧
郭 桦
陈 琛
黄莹祥
关键词:  聚晶金刚石复合片  裂纹缺陷  边界提取  视觉检测    
Abstract: Computer vision detection technology was adopted to extract the defect feature quantity of the surface, and further completed the detection of surface crack defects in polycrystalline diamond compact. First, according to the features of polycrystalline diamond compact, the appropriate light source lighting system was studied. Then, a local boundary extraction method based on the histogram projection gradient extremum was proposed, and the region of interest (ROI) was extracted. On this basis, the method of image filtering and threshold segmentation were used to realize the accurate extraction of the crack. Finally, the crack was identified by calculating the circularity factor and aspect ratio of the cracked domain. Experimental results showed that this method can effectively detect the surface crack defects of polycrystalline diamond compact.
Key words:  polycrystalline diamond compact (PDC)    crack defect    boundary extraction    vision detection
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TB333  
  TP391  
基金资助: 国家科技支撑计划资助项目(2012BAF13B04);华侨大学研究生科研创新能力培育计划资助项目(1511403006)
通讯作者:  郭桦:男,1956年生,博士,教授,硕士研究生导师,主要研究领域为超硬材料 E-mail:guoh1214@hqu.edu.cn   
作者简介:  李慧慧:女,1992年生,硕士研究生,研究方向为视觉检测技术 E-mail:18850079496@163.com
引用本文:    
李慧慧,郭 桦,陈 琛,黄莹祥. 聚晶金刚石复合片表面裂纹视觉检测技术研究[J]. 《材料导报》期刊社, 2017, 31(24): 174-178.
LI Huihui, GUO Hua, CHEN Chen, HUANG Yingxiang. Vision Detection Technology Research for Surface Crack of Polycrystalline Diamond Compact. Materials Reports, 2017, 31(24): 174-178.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.034  或          https://www.mater-rep.com/CN/Y2017/V31/I24/174
1 Kanyanta V, Ozbayraktar S, Maweja K. Effect of manufacturing parameters on polycrystalline diamond compact cutting tool stress-state[J]. Int J Refractory Metals Hard Mater, 2014,45:147.
2 Yahiaoui M, Gerbaud L, Paris J Y, et al. A study on PDC drill bits quality[J].Wear,2013,298-299(1):32.
3 Jeon Y J, Yun J P, Choi D C, et al. Defect detection algorithm for corner cracks in steel billet using discrete wavelet transform[C]∥ ICROS-SICE International Joint Conference 2009. Fukuoka Int Congress Center, 2009:2769.
4 Li Y, Dhakal S, Peng Y. A machine vision system for identification of micro-crack in egg shell[J]. J Food Eng, 2012,109(1):127.
5 Adhikari R S, Moselhi O, Bagchi A. Image-based retrieval of concrete crack properties for bridge inspection[J]. Automation Constr, 2014,39(4):180.
6 Li Rongxuan, Shen Xizhong, Zhang Shuhang, et al. Surface crack detection of shaft components based on image processing[J]. J Graphics, 2015(1):62(in Chinese).
厉荣宣,沈希忠,张树行,等. 基于图像处理的轴类零件表面裂纹检测[J]. 图学学报, 2015(1):62.
7 Fu Bangrui. Image detection on surface crack of billet[D]. Chengdu: University of Electronic Science and Technology of China, 2012(in Chinese).
付邦瑞. 钢坯表面裂纹图像检测[D]. 成都:电子科技大学, 2012.
8 Zhang Junxiong, Xun Yi, Li Wei. Detection of surface cracks of corn kernel based on morphology[J]. Optics Precision Eng, 2007,15(6):951(in Chinese).
张俊雄,荀一,李伟. 基于形态特征的玉米种子表面裂纹检测方法[J]. 光学精密工程, 2007,15(6):951.
9 Wang Yiwen. Research of steel ball surface detection key technology and development of prototype[D]. Harbin: Harbin University of Science and Technology, 2010(in Chinese).
王义文. 钢球表面缺陷检测关键技术研究及样机研制[D].哈尔滨:哈尔滨理工大学, 2010.
10Li Wubin. Research on vision-based online detection algorithm for surface defects of hot rolled steel bar[D]. Jinan: Shandong University, 2013(in Chinese).
李武斌. 热轧圆钢表面缺陷视觉在线检测算法研究[D]. 济南:山东大学, 2013.
11Zhang Hongtao. Research of key technology on on-line surface defects detection system for steel plate based on computer vision[D]. Tianjin: Tianjin University, 2008(in Chinese).
张洪涛. 钢板表面缺陷在线视觉检测系统关键技术研究[D]. 天津:天津大学, 2008.
12Gao Min, Wu Fupei, Li Shengping. Region of interest extraction algorithm based on gray-level projection histogram[J]. J Shantou University (Nat Sci), 2012,27(4):54(in Chinese).
高敏,吴福培,李昇平. 基于投影直方图提取目标感兴趣区域的新方法[J]. 汕头大学学报(自然科学版), 2012,27(4):54.
13Gonzalez R C,Woods R E. 数字图像处理(MATLAB版)[M]. 阮秋琦, 等, 译. 北京:电子工业出版社,2005:72.
14Qian Weixin, Liu Ruigen, Wang Wanli. An improved method of adaptive median filter[J]. Optics Optoelectron Technol, 2011,9(4):35(in Chinese).
钱伟新,刘瑞根,王婉丽. 一种改进的自适应中值滤波算法[J]. 光学与光电技术, 2011,9(4):35.
15Hu Huanxing. Research of technology on surface defects detection for magnetic tile based on machine vision[D]. Nanchang: Nanchang University, 2015(in Chinese).
胡环星. 基于机器视觉的磁瓦表面缺陷检测技术研究[D]. 南昌:南昌大学, 2015.
16Kong Xiangwei, Qu Xinghua, Zhang Liping, et al. Image processing of the precision measurement on metal surface production defect[J]. Nanotechnol Precision Eng, 2008,6(4):267(in Chinese).
孔祥伟,曲兴华,张立平,等. 精确测量金属镀层工件表面缺陷的图像处理方法[J]. 纳米技术与精密工程, 2008,6(4):267.
17Otsu N. A threshold selection method from gray-level histograms[J]. Systems Man Cybernetics IEEE Transactions on,1979,9(1):62.
[1] 徐喻琼, 钟紫珊, 郑黔松. 基于几何优化的复合材料胶接接头强度改进的研究进展[J]. 材料导报, 2024, 38(24): 23090088-9.
[2] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[3] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[6] 王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
[7] 郭辉, 冯晶晶, 陈玉, 孙亚斌, 邱爽. 聚脲涂覆泡沫铝压缩力学性能及吸能特性研究[J]. 材料导报, 2023, 37(23): 22120195-7.
[8] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[9] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[10] 李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
[11] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[12] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[13] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[14] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[15] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed