Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 52-57    https://doi.org/10.11896/j.issn.1005-023X.2017.023.006
  专题栏目:超高性能混凝土及其工程应用 |
常温养护型超高性能混凝土的圆环约束收缩性能*
王俊颜1, 边晨1, 肖汝诚2, 马骉3, 刘国平4
1 同济大学先进土木工程材料教育部重点实验室,上海201804;
2 同济大学土木工程学院,上海200092;
3 上海市政工程设计研究总院(集团)有限公司,上海200092;
4 上海罗洋新材料科技有限公司,上海200092
Restrained Shrinkage Behavior of Ultra High Performance Concrete Without Thermal Curing
WANG Junyan1, BIAN Chen1, XIAO Rucheng2, MA Biao3, LIU Guoping4
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804;
2 College of Civil Engineering, Tongji University, Shanghai 200092;
3 Shanghai Municipal Engineering Design Institute(Group) Co., Ltd., Shanghai 200092;
4 Shanghai Royang Innovative Materials Technologies Co., Ltd., Shanghai 200092
下载:  全 文 ( PDF ) ( 4454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了HCSA膨胀剂3种掺量(0%、3%、6%)下常温养护型超高性能混凝土(Ultra high performance concrete,UHPC)的圆环约束收缩性能,包括:(1) UHPC轴拉应力应变曲线测试;(2) 根据GB/T50082的UHPC自由收缩实验;(3) 根据ASTM C1581的UHPC圆环约束实验。结果表明,3种UHPC的极限拉伸应变均高于3 000με,28 d总收缩值分别为1 005.6με、600.0με、462.2με,并且在圆环约束作用下转化为残余应变、弹性拉应变和塑性拉应变,其中塑性拉应变分别为700.4με、437.9με、389.9με。3种UHPC在拉伸应变达到1 000με时及圆环约束实验中均未发现0.01 mm以上的可检测裂缝。基于拉伸实验和声发射损伤分析方法对UHPC进行应变分析,可知具有应变强化段的3种UHPC在圆环约束实验中的塑性变形以小于0.01 mm的多点分布微裂纹形式存在。通过添加HCSA膨胀剂对常温养护型UHPC进行收缩补偿,可有效地降低UHPC自身的拉应力以及对原有结构的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊颜
边晨
肖汝诚
马骉
刘国平
关键词:  超高性能混凝土  自由收缩  圆环约束试验  轴拉应力应变曲线  塑性变形  HCSA膨胀剂    
Abstract: Restrained shrinkage behavior of ultra high performance concrete (UHPC) incorporating different HCSA expansion agent dosages (0%, 3%, 6%) without thermal curing was investigated by ring test, including three parts: (1) direct tensile stress-strain test of UHPC; (2) free shrinkage test of UHPC according to GB/T 50082; (3) restrained ring-test of UHPC according to ASTM C1581. The results indicated that three types of UHPC all achieved ultimate tensile strain higher than 3 000με. The 28 d free shrinkage values of three types of UHPC were 1 005.6με, 600.0με, 462.2με respectively, which converted into residual strain, elastic tensile strain and plastic tensile strain under ring restraint whose values were 700.4με, 437.9με, 389.9με, respectively. None of the three kinds of UHPC shows a crack wider than 0.01 mm both in the direct tensile test before a tensile strain of 1 000με and in the ring test. The plastic tensile deformation mechanism of UHPC based on the direct tensile test and acoustic emission (AE) analysis method shows that the tensile stress-strain curves of the three kinds of UHPC all have the strain-hardening properties and their plastic deformation presents in the form of multiple cracks smaller than 0.01 mm in the ring test. Adding HCSA expansion agent can effectively reduce the tensile stress of UHPC and influence of UHPC on the structure.
Key words:  ultra high performance concrete    free shrinkage    restrained ring-test    tensile stress-strain curve    plastic deformation    HCSA expansion agent
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *上海市浦江人才计划基金项目(16PJ1409900); 国家自然科学基金青年项目(51609172); 上海市科委项目(17DZ1204200)
作者简介:  王俊颜:男,1982年生,博士,研究员,博士研究生导师,主要从事超高性能水泥基结构材料(UHPC、ULCC等)的研究 E-mail: wangjunyan@tongji.edu.cn
引用本文:    
王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
WANG Junyan, BIAN Chen, XIAO Rucheng, MA Biao, LIU Guoping. Restrained Shrinkage Behavior of Ultra High Performance Concrete Without Thermal Curing. Materials Reports, 2017, 31(23): 52-57.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.006  或          https://www.mater-rep.com/CN/Y2017/V31/I23/52
1 赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式-超高性能混凝土(UHPC/UHPFR)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J].混凝土世界, 2013(10):56.
2 Shao X D,Yi D T,Huang Z Y,et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. J Bridge Eng,2011, 18(5):417.
3 GDJTG/T A01-2015, 超高性能轻型组合桥面结构技术规程[S].
4 DB43T1173-2016, 钢-超高韧性混凝土轻型组合结构桥[S].
5 Loukili A, Khelidj A, Richard P. Hydration kinetics change of relative humidity and autogenous shrinkage of ultra-high-strength concrete[J]. Cem Concr Res, 1999, 29(4):577.
6 Vande Voort T L, Suleiman M T, Sritharan S. Design and perfor-mance verification of UHPC piles for deep foundations[R]. America: Iowa State University, 2008.
7 SETRA-AFGC. Ultra high performance fiber-reinforced concretes recommendations[S]. France, 2013.
8 MCS-EPFL. Ultra-high performance fibre reinforced cement-based composites (UHPFRC): Construction material, dimensioning and application[S]. Switzerland: Swiss Federal Institute of Technology, 2016.
9 Russell H G, Graybeal B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community[R]. America: Federal Highway Administration (FHWA), 2013.
10 赵顺增, 刘立, 郑万廪,等. 高性能补偿收缩混凝土用膨胀剂—HCSA的特点及其应用[J]. 膨胀剂与膨胀混凝土, 2009(2):2.
11 Yoo D Y, Park J J, Kim S W, et al. Influence of ring size on the restrained shrinkage behavior of ultra high performance fiber reinforced concrete[J]. Mater Struct, 2013, 47(7):1161.
12 Wang J. The effects of super absorbent polymer on the performance of ultra high performance concrete[D]. Changsha: Hunan University, 2012 (in Chinese).
王嘉. 高吸水性树脂对超高性能混凝土性能的影响[D]. 长沙:湖南大学, 2012.
13 Swenty M K, Graybeal B A. Material characterization of field-cast connection grouts[R]. America: Federal Highway Administration (FHWA), 2013.
14 ASTM. C1581–04 Standard test method for determining age at cracking and induced tensile stress characteristics of mortar and concrete under restrained shrinkage[S]. America, 2004.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[8] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[9] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[10] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[11] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[12] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[13] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[14] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[15] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed