Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 43-49    https://doi.org/10.11896/j.issn.1005-023X.2017.022.009
  材料研究 |
固体超强酸SO42-/TiO2-Al2O3的制备及其催化合成冰片*
王鹤林,蒋丽红,王亚明,焦星星,潘登
昆明理工大学化学工程学院,昆明 650500
Preparation of SO42-/TiO2-Al2O3 Soild Superacid Catalyst and Its Catalytic Activity for Borneol Synthesis
WANG Helin, JIANG Lihong, WANG Yaming, JIAO Xingxing, PAN Deng
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法和浸渍法制备了系列SO42-/TiO2-Al2O3固体超强酸催化剂,运用XRD、NH3-TPD、FT-IR、Py-FTIR、XPS、SEM等技术手段,研究了复合催化剂材料的结构与性质,初步探讨了固体超强酸SO42-/TiO2-Al2O3催化剂的构效关系,得到适宜的催化剂制备条件为:n(TiO2)/n(Al2O3)=1∶2、硫酸浸渍浓度1 mol/L、催化剂焙烧温度500 ℃。考察了物料物质的量比、催化剂用量、反应时间等对催化合成冰片的影响。结果表明,在物料物质的量比为1∶0.4,催化剂用量为α-蒎烯质量的7%,采用程序升温方式(65 ℃-1 h,75 ℃-4 h,90 ℃-1 h)加热的条件下,固体超强酸SO42-/TiO2-Al2O3催化剂的催化活性最高,α-蒎烯的转化率高达100%,龙脑的收率高达59.74%,SO42-/TiO2-Al2O3固体超强酸催化剂在重复使用6次的条件下,α-蒎烯的转化率均不变,龙脑的收率下降2.99%,催化剂的重复使用性良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹤林
蒋丽红
王亚明
焦星星
潘登
关键词:  SO42-/TiO2-Al2O3  固体超强酸  酯化  龙脑  催化  稳定性    
Abstract: A series of sulphated Al2O3-TiO2 mixed oxides were prepared by sol-gel and dipping process and used as catalysts in synthesis of borneol. The structure and properties of SO42-/TiO2-Al2O3 solid superacid catalysts were characterized by XRD, NH3-TPD, FT-IR, Py-FTIR, XPS, SEM techniques, and relationship between the catalytic performance and the structure was explored. The optimal condition for the preparation of the catalyst was obtained as follows: n(TiO2)/n(Al2O3)=1∶2, concentration of impregnation 1 mol/L, calcination temperature of the catalysts 500 ℃. Meanwhile, the effects of the dosage of level of catalyst, molar ratio of α-pinene to oxalic acid, reaction time on borneol synthesis reaction was investigated. The results showed that when the dosage of level of catalyst was 6% and molar ratio of α-pinene to oxalic acid was 1∶0.4, by using the program temperature heating method (65 ℃-1 h, 75 ℃-4 h, 90 ℃-1 h), i.e. the optimized condition, the resultant solid superacid SO42-/TiO2-Al2O3 catalyst performed the best catalytic effect to borneol synthesis reaction, as α-pinene was completely converted and high selectivity of borneol (58.63% yield) was achieved. After 6 times reuse, the catalyst still maintained good performance—α-pinene conversion rate unchanged, yield of borneol decreased by 2.99%.
Key words:  SO42-/TiO2-Al2O3    solid superacid    esterification    borneol    catalysis    stability
发布日期:  2018-05-08
ZTFLH:  O624  
基金资助: *国家自然科学基金(U1202265)
通讯作者:  王亚明,女,1960年生,博士,教授,博士研究生导师,研究方向为纳米材料催化剂在天然产物深加工中的应用E-mail:wym@Kmust.edu.cn   
作者简介:  王鹤林:男,1989年生,硕士研究生,研究方向为工业催化E-mail:1721758120@qq.com
引用本文:    
王鹤林,蒋丽红,王亚明,焦星星,潘登. 固体超强酸SO42-/TiO2-Al2O3的制备及其催化合成冰片*[J]. 材料导报编辑部, 2017, 31(22): 43-49.
WANG Helin, JIANG Lihong, WANG Yaming, JIAO Xingxing, PAN Deng. Preparation of SO42-/TiO2-Al2O3 Soild Superacid Catalyst and Its Catalytic Activity for Borneol Synthesis. Materials Reports, 2017, 31(22): 43-49.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.009  或          https://www.mater-rep.com/CN/Y2017/V31/I22/43
1 Yin Q, Shi X, Ding H, et al. Interactions of borneol with DPPC phospholipid membranes: A molecular dynamics simulation Study[J]. Int J Mol Sci, 2014,15(11):20365.
2 Ehrnh?ferressler M M, Fricke K, Pignitter M, et al. Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a salvia officinalis L. infusion using human gingival fibroblasts[J]. J Agric Food Chem, 2013,61(14):3451.
3 Li Y H, Sun X P, Zhang Y Q, et al. The antithrombotic effect of borneol related to its anticoagulant property[J]. Am J Chin Med, 2008,36(4):719.
4 Liu R, Zhang L, Lan X, et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: Involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway[J]. Neurosci, 2011,176:408.
5 Imanshahidi M, Hosseinzadeh H. The pharmacological effects of salvia, species on the central nervous system[J]. Phytother Res, 2006,20(6):427.
6 Kong Q X, Wu Z Y, Chu X, et al. Study on the anti-cerebral ischemia effect of borneol and its mechanism[J]. Afr J Tradit, Complementary Altern Med, 2014,11(1):161.
7 Almeida J R G D S, Souza G R, Silva J C, et al. Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice[J]. Sci World J, 2013,2013(4):808460.
8 Bhatia S P, Letizia C S, Api A M. Fragrance material review on borneol[J]. Food Chem Toxicol, 2008,46(11):S77.
9 Zhao J Y, Yang L, Du S Y, et al. Comparative pharmacokinetic studies of borneol in mouse plasma and brain by different administrations[J]. J Zhejiang Uni, Sci B, 2012,13(12):990.
10 Zhao Zhendong, Liu Xianzhang. Fine chemical utilization of turpentine oil (Ⅱ)——perfumes derived from turpentine oil(A)[J]. Biomass Chem Eng, 2001,35(2):38(in Chinese).
赵振东,刘先章. 松节油的精细化学利用(Ⅱ)——松节油合成日化香料(上)[J].生物质化学工程, 2001,35(2):38.
11 Bai Yun. The general situation of flavor from turpentine oil[J]. China Food Addit, 2006(4):133(in Chinese).
白芸. 从松节油制得的食用香料概况[J].中国食品添加剂, 2006(4):133.
12 Liu S, Xie C, Yu S, et al. Esterification of α-pinene and acetic acid using acidic ionic liquids as catalysts[J]. Catal Commun, 2008, 9(7):1634.
13 Li Qun, Huang Shuyun. Study on catalytic synthesis of borneol with solid strong acid[J]. Chem Ind For Prod,1996(2):45(in Chinese).
黎群,黄淑云. 固体强酸催化合成冰片的研究[J].林产化学与工业,1996(2):45.
14 Yang Yiwen, Chen Huizong, Li Lei. Synthesis of borneol from α-Pinene catalyzed by solid superacid SO42-/ZrO2-NiO[J]. Adv Fine Petrochem,2009,10(9):36(in Chinese).
杨义文,陈慧宗,李蕾. 固体超强酸SO42-/ZrO2-NiO催化α-蒎烯合成龙脑[J].精细石油化工进展, 2009,10(9):36.
15 Wang Chunying, Wang Pan, Qi Xinhua, et al. Transformation of cellulose to levulinic acid over SO42-/Al2O3-TiO2 catalyst[J]. Chem Ind Eng Prog, 2009, 28(1):126(in Chinese).
王春英,王攀,漆新华,等. SO42-/Al2O3-TiO2转化纤维素生成乙酰丙酸[J].化工进展, 2009,28(1):126.
16 Han Huan, Jiang Lihong, Wang Yaming, et al. Preparation of Ni/TiO2-Al2O3 catalyst and its application in catalyzing hydrogrnation of turpentine[J]. Chem Ind For Prod,2016(1):92(in Chinese).
韩欢,蒋丽红,王亚明,等. Ni/TiO2-Al2O3催化剂的制备及其在松节油催化加氢反应中的应用[J]. 林产化学与工业,2016(1):92.
17 Jiang Y X, Chen X M, Mo Y F, et al. Preparation and properties of Al-PILC supported SO42-/TiO2, superacid catalyst[J]. J Mol Catal A: Chem, 2004,213(2):231.
18 Zhu Jianfei, Zhu Yiqing. The influence o preparation conditions of Al2O3/TiO2 upon acid sites properties[J]. Chin J Inorg Chem,1999,15(4):429(in Chinese).
朱建飞,朱毅青. Al2O3-TiO2二元氧化物的制备条件对酸性的影响[J].无机化学学报, 1999,15(4):429.
19 Schoonheydt R, Lunsford J. In infrared spectroscopic characterization of the adsorption and reactions of SO2 on MgO[J]. Asia-Pac Conf Commun Fourth Optoelectron Commun Conf, 1972(2):1446.
20 Yadav G D, Nair J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microp Mesop Mater, 1999,33(1-3): 1.
21 Zhai Long, Xu Lianchi, Liu xiguang, et al. Preparation and catalytic activity of mesoporous WO3-CeO2-ZrO2 solid superacid catalyst[J]. J Chin Silic Soc, 2016,44(7):1033(in Chinese).
翟龙,许连池,刘曦光,等. 介孔WO3-CeO2-ZrO2固体超强酸的制备与催化性能[J].硅酸盐学报,2016,44(7):1033.
22 Guan Guofeng, Tan Qiang, Wan Hui. Synthesis of tetraoctyl pyromellitate on solid superacid SO42-/TiO2- Al2O3[J]. Petrochem Technol, 2005,34(7):643(in Chinese).
管国锋,谭强,万辉. SO42- /TiO2-Al2O3固体酸催化剂的表征及其催化合成均苯四甲酸四异辛酯[J].石油化工,2005,34(7):643.
23 Xia Q H, Hidajat K, Kawi S. Effect of ZrO2 loading on the structure, acidity, and catalytic activity of the SO42-/ZrO2/MCM-41 acid catalyst[J]. J Catal, 2002,205(2):318.
24 Yu M S, Rubtsov V I, Vasilets V N, et al. EELS, XPS and IR study of C60·2S8 compound[J]. Synth Met, 1995,70(1):1381.
25 Dutta S N, Dowerah D, Frost D C. Study of sulphur in Assam coals by X-ray photoelectron spectroscopy[J]. Fuel, 1983,62(7): 840.
26 Wei F, Ni L, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity[J]. J Hazard Mater, 2008,156(1-3): 135.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[6] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[7] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[8] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[9] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[10] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[11] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[12] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[13] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[14] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[15] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed