Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 152-157    https://doi.org/10.11896/j.issn.1005-023X.2017.020.031
  计算模拟 |
等规聚丙烯注塑成型冷却固化分子机制研究*
曹文华, 辛勇, 刘东雷, 喻选
南昌大学机电工程学院,南昌 330031
Macromolecular Solidification Mechanism of the Isotropic Polypropylene (iPP) Material During the Injection Cooling Stage
CAO Wenhua, XIN Yong, LIU Donglei, YU Xuan
School of Mechanical & Electrical Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 2478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对等规聚丙烯(iPP)在注塑成型冷却过程中的液-固相变与大分子形构问题,采用分子模拟实验的方法,研究了iPP材料在注塑冷却过程中的分子固化与形态演化的分子机制。建立了聚合度依次为24、36、51、72、120,链数为36、24和16的iPP胞元体系,基于Smart Minimizer与SA算法实现了能量初始化;基于周期性边界并引入COMPASS力场及Velocity-Verlet算法,实现了体系冷却固化过程的分子模拟实验。结果表明:不同模拟体系的Tg结果符合Flory自由体积理论;固化前后iPP大分子链主链键长、键角等结构参数均呈高斯分布,温度越低键长与键角分布越集中,符合无外力加载条件下的缠结大分子链的冷却松弛过程;〈h〉和〈Rg〉均随聚合度的增大而增大,降温过程中〈h〉呈高斯分布状态,而〈Rg〉分布趋于集中,一方面表明冷却固化过程中大分子链由初始取向排布逐步恢复至缠结状态,另一方面体现了固化结晶过程;材料聚合度越大,降温过程中分子迁移或固化速率越小,且当温度高于Tg时,聚合度越小,降温过程体系扩散系数下降梯度越大,而温度下降至Tg以下则无明显规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹文华
辛勇
刘东雷
喻选
关键词:  等规聚丙烯  注塑成型  冷却  固化  分子机制    
Abstract: In response to the micro-mechanism of the liquid-solid phase transition and macromolecular structure evolution of the isotropic polypropylene (iPP) material during the injection molding cooling process, the macromolecular solidification and confi-guration evolution mechanism was studied based on the molecular dynamic simulation method. The different iPP cell systems were built, of which the polymerization degree were 24, 36, 51, 72, 120 and chain number were 36, 24 and 16, successively. The energy initialization was performed using the smart minimization method followed by the simulated annealling (SA) method. Coupling with the periodic boundary conditions, COMPASS force field and the velocity-verlet algorithm, the cooling simulation was launched. The results indicate that the glass transition temperature (Tg) of each simulated cell coincides well with the Flory’s free volume theory. The bond length as well as bond angle presents a Gaussian distribution, the lower the temperature, the more concentrated distribution of them, agreeing with the cooling free relax process of the macromolecular. The 〈h〉 and 〈Rg〉 of the polymer chains are all increasing with the polymerization degree. 〈h〉 shows a Gaussian distribution during the declining of the temperature, while 〈Rg〉 exhibits a shrinkage trend, which indicates the macromolecular chains configuration tangle again during this stage from the orientated phase, and another crystallize phase is taken place. The migration and solidification rate give a negative correction with the increasing polymerization degree. And the diffusion coefficient exhibits steeper declining trend with higher polymerization degree when the temperature is above the glass transition temperature.
Key words:  isotropic polypropylene    injection molding    cooling    solidification    molecular mechanism
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TQ320  
基金资助: *国家自然科学基金(51565034;1365038);江西省科技支撑计划项目(20122BBE500044;20151BBE50033)
作者简介:  曹文华:男,1970年生,博士研究生,副教授,主要从事注塑成型聚合物定向迁移与排布数值理论与算法研究 E-mail:caowenhua@ncu.edu.cn 刘东雷:通讯作者,1977年生,博士后,副教授,主要从事聚合物成型加工形态结构与性能关系研究 E-mail:dlliu@ncu.edu.cn
引用本文:    
曹文华, 辛勇, 刘东雷, 喻选. 等规聚丙烯注塑成型冷却固化分子机制研究*[J]. 《材料导报》期刊社, 2017, 31(20): 152-157.
CAO Wenhua, XIN Yong, LIU Donglei, YU Xuan. Macromolecular Solidification Mechanism of the Isotropic Polypropylene (iPP) Material During the Injection Cooling Stage. Materials Reports, 2017, 31(20): 152-157.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.031  或          https://www.mater-rep.com/CN/Y2017/V31/I20/152
1 Tashiro K, Sasaki S. Structural changes in the ordering process of polymers as studied by an organized combination of the various measurement techniques [J]. Prog Polym Sci, 2003,28(3):451.
2 Hobbs J K, Farrance O E, Kailas L. How atomic force microscopy has contributed to our understanding of polymer crystallization [J]. Polymer, 2009,50(18):4281.
3 Mandelkern L. Crystallization kinetics of homopolymers: overall crystallization: A review [J]. Biophys Chem, 2004,112(2-3):109.
4 Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers [J]. Anal Bioanal Chem, 2009,395(6):1589.
5 Wang Z G, Benjamin S. Probing the early stages of melt crystallization in polypropylene by simultaneous small-and wide-angle X-ray scattering and laser light scatterin [J]. Macromolecules, 2000,33(3):978.
6 Sanmartín S, Ramos J, Vega J F, et al. Strong influence of branc-hing on the early stage of nucleation and crystal formation of fast cooled ultralong n-alkanes as revealed by computer simulation [J]. Eur Polym J, 2014,50(1):190.
7 Yi P, Rutledge G C. Molecular simulation of crystal nucleation in n-octane melts [J]. J Chem Phys, 2009,131(13):134902.
8 Koyama A, Yamamoto T, Fukao K, et al. Molecular dynamics studies on polymer crystallization from a stretched amorphous state [J]. J Macromol Sci Part B, 2003,42(3-4):821.
9 Sultanov V I, Atrazhev V V, Dmitriev D V, et al. Molecular dynamics simulation of chains mobility in polyethylene crystal [J]. Jetp Lett, 2014,98(5):332.
10Yamamoto T. Molecular dynamics of polymer crystallization revisited: Crystallization from the melt and the glass in longer polyethylene [J]. J Chem Phys, 2013,139(5):054901.
11Wang J, Zhu X, Lu X, et al. On structures and properties of polyethylene during heating and cooling processes based on molecular dynamics simulations [J]. Comput Theor Chem, 2015,1052:26.
12Koyama A, Yamamoto T, Fukao K, et al. Molecular dynamics si-mulation of polymer crystallization from an oriented amorphous state[J]. Phys Rev E, 2002,65(5 Pt 1):8675.
13Yamamoto T, Sawada K. Molecular-dynamics simulation of crystallization in helical polymers [J]. J Chem Phys, 2005,123(23):234906.
14Wei C. Adsorption of an alkane mixture on carbon nanotubes: Selectivity and kinetics [J]. Phys Rev B Condensed Matter, 2009,80(8):085409.
15Thompson P A, Robbins M O. Shear flow near solids: Epitaxial order and flow boundary conditions [J]. Phys Rev A, 1990,41(12):6830.
16Bunte S W, Sun H. Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field [J]. J Phys Chem B, 2000,104(11):2477.
17Fox T G, Flory P J. Second-order transition temperatures and rela-ted properties of polystyrene. I. Influence of molecular weight [J]. J Appl Phys, 1950,21(6):581.
18Fox T G, Flory P J. The glass temperature and related properties of polystyrene. Influence of molecular weight [J]. J Polym Sci, 1954,14(75):315.
19Wada Y, Hotta Y, Suzuki R. Glass transition and relaxation in the amorphous phase of isotactic polypropylene [J]. J Polym Sci Part C Poly Symp, 2007,23(2):583.
20Waheed N, Ko M J, Rutledge G C. Molecular simulation of crystal growth in long alkaness [J]. Polymer, 2005,46(20):8689.
21Wang Q, Keffer D J, Nicholson D M. A coarse-grained model for polyethylene glycol polymer [J]. J Chem Phys, 2011,135(21):214903.
22Tseng H C, Chang R Y, Wu J S. Molecular structural property and potential energy dependence on none quilibrium-thermodynamic state point of liquid n-hexadecane under shear [J]. J Chem Phys, 2011,134(4):31.
23Mohammad A, Eckhard S. Molecular dynamics investigation of the thermo-responsive polymer poly (N-isopropylacrylamide) [J]. Macromol Theor Simul, 2012,21(2):106.
[1] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[4] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[5] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[6] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[7] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[8] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[9] 王泽铭, 戴志伟, 彭康, 苏磊, 王红洁, 杜玉森. 主动热防护技术及自发汗冷却材料的研究进展[J]. 材料导报, 2024, 38(21): 23060076-6.
[10] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[11] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[12] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[13] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[14] 郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
[15] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed