Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 158-163    https://doi.org/10.11896/j.issn.1005-023X.2017.020.032
  计算模拟 |
不同钙硅比水化硅酸钙力学性能的分子动力学模拟*
林伟辉1, 付甲2, 王志华1, 辛浩1
1 太原理工大学应用力学与生物医学工程研究所,材料强度与结构冲击山西省重点实验室,太原 030024;
2 法国国立应用科学学院土木工程与机械工程实验室,雷恩 35708
Molecular Dynamics Simulations of Mechanical Properties of C-S-H Structures with Varying Calcium-to-Silicon Ratios
LIN Weihui1, FU Jia2, WANG Zhihua1, XIN Hao1
1 Shanxi Key Lab. of Material Strength & Structural Impact, Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024;
2 Laboratoire de Génie Civil et Génie Mécanique, INSA de Rennes, Rennes 35708
下载:  全 文 ( PDF ) ( 6055KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于Pellenq等的建模思路,构造了不同钙硅比(C/S)的水化硅酸钙(C-S-H)原子模型,采用分子动力学方法模拟了C-S-H在轴向拉伸载荷作用下的力学性能。重点比较分析了不同钙硅比的C-S-H在无水及含水情况下的拉伸应力-应变曲线。模拟结果表明:(1)与钙硅比为1.0的情况相比,钙硅比大于1.0时C-S-H结构的抗拉强度显著下降;(2)钙硅比大于1.0时,钙氧间的相互作用在承受载荷方面起重要作用,有效弥补了结构中因SiO2基团缺失引起的缺陷,使得C-S-H的强度下降程度趋缓;(3)当应变达到一定程度时,水分子能够切断钙氧间的相互作用,使得C-S-H结构的强度进一步降低甚至引起断裂失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林伟辉
付甲
王志华
辛浩
关键词:  分子动力学  水化硅酸钙  钙硅比  力学性能    
Abstract: The atomic structures of calcium silicate hydrate (C-S-H) with varying calcium-to-silicon (C/S) ratios were constructed by the cCSH models of Pellenq et al., and the mechanical properties of C-S-H structures under tensile loading were investigated using molecular dynamics (MD) method. The results from the molecular dynamics simulations showed that the tensile strength was decreased significantly when the C/S ratio was greater than 1.0, compared to the case of C/S=1.0. The interaction between calcium atoms and oxygen atoms played an important role under loading, which made up the shortfall caused by the lack of SiO2, and the decrease of the strength of C-S-H in the case of C/S>1.0 became slow. The water molecules helped to cut off the interaction between calcium atoms and oxygen atoms at a certain deformation degree, which reduced the strength of C-S-H till to the failure mode.
Key words:  molecular dynamics    calcium silicate hydrate    calcium-to-silicon ratio    mechanical properties
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  O561.2  
  O341  
基金资助: *国家自然科学基金(11390362;11402164);山西省基础研究计划(2015021024);NSFC-广东联合基金超级计算科学应用研究专项资助及国家超级计算广州中心资助
作者简介:  林伟辉:男,1991年生,硕士研究生,研究方向为分子动力学模拟 E-mail:lwhtyut@163.com 辛浩:通讯作者,男,1982年生,博士,讲师,硕士研究生导师,研究方向为微纳米力学 E-mail:xinhao@tyut.edu.cn
引用本文:    
林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
LIN Weihui, FU Jia, WANG Zhihua, XIN Hao. Molecular Dynamics Simulations of Mechanical Properties of C-S-H Structures with Varying Calcium-to-Silicon Ratios. Materials Reports, 2017, 31(20): 158-163.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.032  或          https://www.mater-rep.com/CN/Y2017/V31/I20/158
1 Ye Jiayuan, Zhang Wensheng, Wang Hongxia, et al. Structure of calcium silicate hydrate Ca4Si6O14-(OH)4·2H2O simulated by the molecular dynamics[J]. J Chin Ceram Soc, 2010,38(12):2346(in Chinese).
叶家元,张文生,王宏霞,等.分子动力学模拟水化硅酸钙 Ca4Si6O14-(OH)4·2H2O的结构[J]. 硅酸盐学报, 2010,38(12):2346.
2 Hamid S A. The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O [J]. Zeitschrift fur Kristallographie, 1981,154(3-4):189.
3 Murray S J, Subramani V J, Selvam R P, et al. Molecular dynamics to understand the mechanical behavior of cement paste[J]. Transportation Res Record J Transportation Res Board, 2010,2142(2142):75.
4 D′espinose De La Caillerie J, Lequeux N. Lecture on the structure of CSH, AFm and AFt phases[J]. Physique, Chimie et Mécanique des Matériaux Cimentaire, 2008,106(38):16102.
5 Allen A J, Thomas J J, Jennings H M. Composition and density of nanoscale calcium-silicate-hydrate in cement[J]. Nat Mater, 2007,6(4):311.
6 Pellenq R J, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates[J]. PNAS, 2009,106(38):16102.
7 Abdolhosseini Qomi M J, Krakowiak K J, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates[J]. Nat Commun, 2014,5(4960):4960.
8 Manzano H, Moeini S, Marinelli F, et al. Confined water dissociation in microporous defective silicates:Mechanism, dipole distribution, and impact on substrate properties[J]. J Am Chem Soc, 2012,134(4):2208.
9 Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004,108(4):1255.
10Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale:A molecular dynamics study[J]. Mater Chem Phys, 2014,146(3):503.
11Shahsavari R, Pellenq J M, Ulm F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Phys Chem Chem Phys, 2010,13(3):1002.12Hou D, Ma H, Zhu Y, et al. Calcium silicate hydrate from dry to saturated state:Structure, dynamics and mechanical properties[J]. Acta Mater, 2014,67(15):81.
13Hou D, Zhao T, Wang P, et al. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading[J]. Eng Fracture Mech, 2014,131:557.
14Janakiram Subramani V, Murray S, Panneer Selvam R, et al. Atomic structure of calcium silicate hydrates using Molecular Mechanics[C] ∥ Transportation Research Board 88th Annual Mee-ting. Washington D.C.,2009
15Klessig R, Polak E. Efficient implementations of the polak-ribière conjugate gradient algorithm[J]. SIAM J Control, 1972,10(3):524.
16Berendsen H, Grigera J, Straatsma T. The missing term in effective pair potentials[J]. J Phys Chem, 1987,91(24):6269.
17Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995,117(1):1.
18Taylor H F W. Cement chemistry[J]. 2nd Edition. London:Tho-mas Telford,2007.
19Hewlett P. Lea′s chemistry of cement and concrete[M].4th Edition.Oxford: Elsevier Butterworth-Heinemann, 2003.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[7] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[8] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[9] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed