Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 164-169    https://doi.org/10.11896/j.issn.1005-023X.2017.020.033
  计算模拟 |
基于有限元法模拟微晶玻璃的微晶化加热过程*
刘红盼1, 黄小凤1, 马丽萍1, 尚志标1, 刘秀状1, 赵丹1, 蒋明2
1 昆明理工大学环境科学与工程学院,昆明 650500;
2 云南农业大学资源与环境学院,昆明 650201
Finite Element Simulation on the Heat Transfer in the Crystallization Behavior Process of Glass-ceramics
LIU Hongpan1, HUANG Xiaofeng1, MA Liping1, SHANG Zhibiao1, LIU Xiuzhuang1, ZHAO Dan1, JIANG Ming2
1 Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650500;
2 College of Resources and Environment, Yunnan Agricultural University, Kunming 650201
下载:  全 文 ( PDF ) ( 1914KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以CaO-Al2O3-SiO2系基础玻璃为研究对象,基于ANSYS有限元分析对基础玻璃微晶化过程进行了数值模拟,得到了基础玻璃内部中心点和端点温度场随时间的变化曲线方程。结果显示,在从室温加热到核化温度阶段(25~780 ℃)和从核化温度加热到晶化温度阶段(780~1 080 ℃),基础玻璃内部的中心点温度和端点温度值随时间变化与指数方程拟合度较高。为防止在加热过程中温度场中有较大的温度梯度分布和热应力的产生,在25~780 ℃阶段的升温速率应控制在2~4 ℃/min;在780~1 080 ℃阶段的升温速率应控制在0~2 ℃/min。通过差热分析和X射线衍射等分析手段对以3 ℃/min的升温速率升至核化温度(780 ℃)后又以1 ℃/min的升温速率升至晶化温度(1 080 ℃)后制得的CaO-Al2O3-SiO2系微晶玻璃进行了实验验证,得到了主晶相为硅灰石(CaSiO3)和含铁硅灰石类固溶体((Ca,Fe)SiO3)且性能优异的微晶玻璃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘红盼
黄小凤
马丽萍
尚志标
刘秀状
赵丹
蒋明
关键词:  微晶玻璃  微晶化过程  传热  有限元分析    
Abstract: The CaO-Al2O3-SiO2(CAS) glasses that were prepared by natural cooling yellow phosphorus furnace slag were taken as research objects. On the basis of ANSYS finite element analysis, the numerical simulation of the crystallization behavior process of glass-ceramics was carried out to obtain the curve equation of the center point and the end point temperature field of the glass changing with time. The results show that the variation of center temperature and the endpoint temperature value of internal glass with time have a high fitting degree with the exponential equation in the stage of heating from room temperature to nucleation temperature (25—780 ℃) and from the nucleation temperature to crystallization temperature (780—1 080 ℃). In order to prevent the large temperature gradient distribution and thermal stress generation in the heating process of the crystallization behavior process of glass-ceramics, the heating rate should be controlled at 2—4 ℃/min in the stage of 25—780 ℃ and at 0—2 ℃/min in the stage of 780—1 080 ℃ respectively. Through differential thermal analysis and X-ray diffraction, the glass specimen were heated to nucleation temperature (780 ℃) at 3 ℃/min, and then heated to crystallization temperature (1 080 ℃) at 1 ℃/min to obtain the CaO-Al2O3-SiO2 microcrystalline glass, which was then verified by experiment to obtain the glass-ceramics with excellent property whose main crystalline phase were wollastonite (CaSiO3), containing wollastonite type of solid solution of iron ((Ca,Fe)SiO3).
Key words:  glass-ceramics    crystallization behavior process    heat transfer    finite element simulation
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  X7  
基金资助: *昆明理工大学分析测试基金(2016P2014607009;2016T11304019;2016M20152207032)
作者简介:  刘红盼:男,1988年生,博士研究生,主要研究方向为固体废物资源化利用 E-mail:sclhpkm@126.com 黄小凤:通讯作者,副教授,主要研究方向为固体废物资源化利用 E-mail:hxfkmust@163.com
引用本文:    
刘红盼, 黄小凤, 马丽萍, 尚志标, 刘秀状, 赵丹, 蒋明. 基于有限元法模拟微晶玻璃的微晶化加热过程*[J]. 《材料导报》期刊社, 2017, 31(20): 164-169.
LIU Hongpan, HUANG Xiaofeng, MA Liping, SHANG Zhibiao, LIU Xiuzhuang, ZHAO Dan, JIANG Ming. Finite Element Simulation on the Heat Transfer in the Crystallization Behavior Process of Glass-ceramics. Materials Reports, 2017, 31(20): 164-169.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.033  或          https://www.mater-rep.com/CN/Y2017/V31/I20/164
1 Francis A A. Conversion of blast furnace slag into new glass-ceramic material[J]. J Eur Ceram Soc, 2004,24(9):2819.
2 Zhao Y, Chen D, Bi Y, et al. Preparation of low cost glass-ceramics from molten blast furnace slag[J]. Ceram Int, 2012,38(3):2495.
3 Rawlings R D, Wu J P, Boccaccini A R. Glass-ceramics: Their production from wastes—A review[J]. J Mater Sci, 2006,41(3):733.
4 Kloužek J, Němec L, Ullrich J. Modelling of the refining space working under reduced pressure[J]. Glass Sci Technol, 2000,73(11):329.
5 Wang J, Brewster B S, Mcquay M Q, et al. Validation of an improved batch model in a coupled combustion space/melt tank/batch melting glass furnace simulation[J]. Glass Sci Technol Glastechnische Berichte, 2000,73(10):299.
6 Dong W, Lu J S, Feng Z J, et al. Effect of glass cooling rate on the crystallization behavior and structure of lithium aluminosilicate glass-ceramics[J]. J Inorg Mater, 2012,27(4):400(in Chinese).
董伟, 卢金山, 冯志军,等. 玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响[J]. 无机材料学报, 2012,27(4):400.
7 Han W M, Chen J F, Xue C X, et al. Thermal stress analysis of aerial laminated glass based on ANSYS[J]. Ordnance Mater Sci Eng 2010,33(6):1(in Chinese).
韩文梅, 陈敬芬, 薛春霞,等. 基于ANSYS航空层合玻璃的热应力分析[J]. 兵器材料科学与工程, 2010,33(6):1.
8 Guo B, Bao L. Finite element analysis of temperature field of glass windows in the north cold region based on ANSYS[J]. J Henan Sci Technol, 2014(20):144(in Chinese).
郭彬, 包磊. 基于ANSYS的北方寒冷地区玻璃窗温度场有限元分析[J]. 河南科技, 2014(20):144.
9 Shao H G, Pang S H, Yuan T S, et al. Modeling of temperature depth profile of float glass in shaping process[J]. Bull Chinese Ceram Soc, 2004,23(4):22(in Chinese).
邵宏根, 庞世红, 苑同锁,等. 浮法玻璃成型过程中玻璃板厚方向温度场的数值模拟[J]. 硅酸盐通报, 2004,23(4):22.
10Liu H P, Huang X F, Ma L P, et al. Effect of TiO2 on crystallization behavior of glass-ceramics produced by natural cooling yellow phosphorus furnace slag[J]. J Synthetic Cryst, 2014,43(6):1561(in Chinese).
刘红盼, 黄小凤, 马丽萍, 等. TiO2对自然冷却黄磷炉渣微晶玻璃析晶行为的影响[J]. 人工晶体学报, 2014,43(6):1561.
11Huang X F, Li G B, Liu H P, et al. Effect of CaF2 on crystallization behavior of glass-ceramics prepared using natural cooling yellow phosphorus furnace slag[J]. J Synthetic Cryst, 2015,44(7):1968(in Chinese).
黄小凤, 李国标, 刘红盼, 等. CaF2对自然冷却黄磷炉渣微晶玻璃析晶行为影响[J]. 人工晶体学报, 2015,44(7):1968.
12宋晓岚. 无机材料科学基础[M]. 北京:化学工业出版社, 2006.
13田英良. 新编玻璃工艺学[M]. 北京:中国轻工业出版社, 2009.
14Mcmillan P W. Glass-ceramics [M]. London: Academic Press, 1988.
15程金树. 微晶玻璃[M]. 北京:化学工业出版社, 2006.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[3] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[4] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[5] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[6] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[7] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[8] 田小飞, 王林山, 梁雪冰, 郑逢时, 胡强. 电力电子器件用液冷针翅散热器的研究进展[J]. 材料导报, 2024, 38(21): 23070138-11.
[9] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[10] 包镇红, 罗薇, 苗立锋, 江伟辉. 晶化制度对Mg0.6Al1.2Si1.8O6透明微晶玻璃结构与性能的影响[J]. 材料导报, 2024, 38(13): 23010083-6.
[11] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[12] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[13] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[14] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[15] 尹雅, 李庆文, 乔兰, 张庆龙. SiC对能源桩混凝土传热与力学性能的影响[J]. 材料导报, 2023, 37(10): 21060198-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed