Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 107-113    https://doi.org/10.11896/j.issn.1005-023X.2017.020.023
  材料研究 |
早期温湿度条件对柠檬酸改性硫氧镁胶凝材料性能的影响及机理*
巴明芳, 朱杰兆, 柳俊哲
宁波大学建筑工程与环境学院,宁波 315211
Effects and Mechanism of Early Temperature and Humidity on Properties of Modified Magnesium Oxysulfate Cementitious Materials
BA Mingfang, ZHU Jiezhao, LIU Junzhe
Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 3030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了确定柠檬酸改性硫氧镁(CMOs)胶凝材料的早期温湿度稳定性,分别研究了早期养护温湿度对其力学性能及耐水性能的影响,并采用SEM、XRD及TG测试技术对其影响机理进行了分析。结果表明:CMOs早期力学性能和耐水性随着早期养护温度升高先提高后降低,35 ℃左右其3 d抗折强度达到最大值10.4 MPa,3 d抗压强度达到最大值68.0 MPa,浸水46 d后软化系数达到0.9;而后期力学性能和耐水性则随着早期养护温度的提高有不同程度的降低;结果还发现相同早期养护温度时早期饱水养护大大降低CMOs的力学性能和耐水性。同时微观结构分析表明,早期养护温度的升高可以使CMOs水化反应更充分,结构相对比较致密,从而使其早期力学性能有明显提高,但水化后期CMOs结构稳定性随着早期养护温度的升高而明显降低,从而导致其后期强度有不同程度的降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巴明芳
朱杰兆
柳俊哲
关键词:  硫氧镁胶凝材料  早期温湿度  力学性能  耐水性    
Abstract: In order to determine early temperature and humidity related stability of citric-acid modified magnesium oxysulfate (CMOs) cementitious materials, the effects and influencing mechanism of different early curing temperature and humidity on mechanical properties and water resistance of CMOs were investigated. The results show that the early mechanical property of CMOs materials increases first and then decreases with the increase of the early curing temperature. At about 35 ℃ the maximum value of flexural strength, compressive strength and water resistance coefficient with 46 days immersion reach 10.4 MPa, 68.0 MPa and 0.9 respectively; While the late mechanical property and water resistance of CMOs material decreases with the increase of the early curing temperature. Furthermore, the mechanical properties and water resistance of CMOs materials with steam curing significantly decreases. At the same time, micro-analysis results show that the hydration reaction of CMOs materials can be more complete because of the increase of the early curing temperature so that the early mechanical properties improve significantly. While the later structural stability deceases with the increase of the early curing temperature, which leads to the decrease of its mechanical properties at the later stage.
Key words:  magnesium oxysulfate    early temperature and humidity    mechanical properties    water resistance
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TU528.37  
基金资助: *国家自然科学基金(51478227); 浙江省自然科学基金(LY17E080009);宁波市自然科学基金(2017A610311)
作者简介:  巴明芳:博士,副教授,研究方向为高性能绿色水泥基材料及其耐久性 E-mail:bamingfang@nbu.edu.cn 柳俊哲:通讯作者,教授,博士研究生导师, 研究方向为高性能水泥基材料及耐久性 E-mail:liujunzhe@nbu.edu.cn
引用本文:    
巴明芳, 朱杰兆, 柳俊哲. 早期温湿度条件对柠檬酸改性硫氧镁胶凝材料性能的影响及机理*[J]. 《材料导报》期刊社, 2017, 31(20): 107-113.
BA Mingfang, ZHU Jiezhao, LIU Junzhe. Effects and Mechanism of Early Temperature and Humidity on Properties of Modified Magnesium Oxysulfate Cementitious Materials. Materials Reports, 2017, 31(20): 107-113.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.023  或          https://www.mater-rep.com/CN/Y2017/V31/I20/107
1 Urwongse L, Sorrell C A. Phase relationships in magnesium oxysulfatecements[J]. J Am Ceram Soc, 1980,63(9-10):523.
2 Li Y, Yu H F, Dong J G, et al. Research progress in deliquescence dehalogenation and efflorescence of magnesium oxychloride cement[J]. Bull Chin Ceram Soc, 2010,29(4):858(in Chinese).
李颖, 余红发, 董金关, 等. 氯氧镁胶凝材料吸潮返卤泛霜的研究进展[J]. 硅酸盐通报, 2010,29(4):858.
3 Li Z Y, Jin D X, Zhou C, et al. Laboratory study on magnesia cement for oil well sealing and temporary blocking[J]. J Southwest Petroleum University(Sci Technol Ed), 2011,33(5):152(in Chinese).
李早元, 靳东旭, 周超, 等. 镁氧水泥用于油井堵漏及暂闭的室内研究[J]. 西南石油大学学报(自然科学版), 2011,33(5):152.
4 Zhou X, Li Z. Light-weight wood-magnesium oxychloride cement composite building products made by extrusion[J]. Construct Build Mater, 2012(1):382.
5 Li Z G, Ji Z S, Li Y H. Research progress on deformation and cracking of magnesium oxychloride cement products[J]. Bull Chin Ceram Soc, 2012,31(2):1(in Chinese).
李振国, 吉泽升, 李一珩. 氯氧镁水泥制品变形及开裂的研究进展[J]. 硅酸盐通报, 2012,31(2):1.
6 Cole W F, Demediuk T Aust.X-ray, thermal, and dehydration stu-dies on magnesium oxychlorides [J]. Australian J Chem, 1955,8(2):234.
7 Demediuk T, Cole W F, Heuber H V. Studies on magnesium and calcium oxychlorides [J]. Australian J Chem, 1955,8(2):215.
8 Demediuk T, Cole W F. Study of magnesium oxysulphase [J]. Australian J Chem, 1957,10(2):287.
9 Kahle K. Mechanism formation of magnesium-sulfate cements[J]. Silikatechnik, 1972,2(5):148.
10Vincenzo M Sglavo, Riccardo Ceccato. Influence of curing temperature on the evolution of magnesium oxychloride cement [J]. J Mater Sci, 2011,46:6726.
11余红发. 氯氧镁水泥及其应用[M]. 北京:中国建筑工业出版社, 1993:363.
12Luo J G, Yao J S, Sun J E. Study on kinetics of hydration for MgO-MgSO4-H2O cementitious system[J]. Bull Chin Ceram Soc, 1998,26(2):157(in Chinese).
罗建国, 姚吉升, 孙建鄂. MgO-MgSO4-H2O胶凝体系水化动力学的研究[J]. 硅酸盐学报, 1998,26(2):157.
13Ding Y, Zhao H Z, Sun Y G, et al. Superstructured magnesium hydroxide sulfate hydrate fibers photoluminescence study[J]. Int J Inorg Mater, 2001,3(2):151.
14Yue T, Gao S Y, Zhu L X, et al. Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4·Mg(OH)2·2H2O[J]. J Molecular Struct, 2002,616(1-3):247.
15Ma P H, Wei Z Q, Xu G, et al. Dehydration and desulfuration of magnesium oxysulfate whisker[J]. J Mater Sci Lett, 2000,19:257.
16Liu Z P, Zhang W M, Yang Y H, et al. Hydrothermal synthesis of sector-like hydrous magnesium nickel oxysulfate whisker[J]. J Mater Sci Lett, 2002,21:65.
17Xiang L, Liu F, Li J, et al. Hydrothermal formation and characte-rization of magnesium oxysul-fate whiskers[J]. Mater Chem Phys, 2004,87:424.
18Deng D H. A study on the theories and techniques for improvimg properties of MgO-based basic salt cements and their articles[D]. Changsha:Central South University, 2005(in Chinese).
邓德华. 提高镁质碱式盐水泥性能的理论与应用研究[D]. 长沙: 中南大学, 2005.
19Wu C Y, Yu H F. Effects of phosphoric acid and phosphates on magnesium oxysulfate cements[J]. Mater Struct, 2015,48:907.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed