Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 101-106    https://doi.org/10.11896/j.issn.1005-023X.2017.020.022
  材料研究 |
银/氯化银电极用于监测混凝土中氯离子含量的研究*
陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博
河海大学力学与材料学院,南京 211100
Silver/Silver Chloride Electrode Embedded in Concrete with an Application to Monitoring Chloride Ion Content
TAO Debiao, JIANG Linhua, JIN Ming, BAI Shuya, JIANG Shaobo
College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 2089KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用干湿循环渗透法,通过实验室制备的银/氯化银电极来监测混凝土中的氯离子含量,测试了电极的响应性能和长期稳定性,研究了总氯离子含量与自由氯离子含量之间、总氯离子含量与电位之间的关系。结果表明:银/氯化银电极电位能比较好地监测到混凝土中氯离子含量变化的过程,具有良好的长期稳定性能。总氯离子含量随自由氯离子含量的增加而增加,两者之间呈现幂函数的规律。总氯离子含量随电位上升而下降,两者之间呈指数函数的规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶德彪
蒋林华
金鸣
白舒雅
姜少博
关键词:  干湿循环  银/氯化银电极  监测  氯离子含量    
Abstract: Wet-dry alternation permeation was used in this experiment. The Ag/AgCl electrode manufactured by laboratory was chosen to monitor the content of the chloride ion in concrete. Response performance and long-term stability of the Ag/AgCl electrode were also studied. The relation of total chloride with free chloride, and the relation of total chloride with electrode potential were also studied. Results revealed that the change of the chloride ion content in concrete can be monitored well by the Ag/AgCl electrode potential. The Ag/AgCl electrode has a good long-term stability. The total chloride increases with the addition of free chloride. The power function can be used to describe the relationship of total chloride and free chloride. The total chloride decreases when the potential increases. The exponential function can be used to describe the relationship of total chloride and electrode potential.
Key words:  wet-dry alternation method    Ag/AgCl electrode    monitor    chloride ion content
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TU528.041  
基金资助: *国家科技支撑计划(2015BAB07B04);国家自然科学基金(51278167;51479051);中央高校业务费(2016B04514)
作者简介:  陶德彪:男,1990年生,硕士研究生,研究方向为混凝土耐久性 E-mail:15161468198@163.com 蒋林华:通讯作者,男,1963年生,教授,博士研究生导师,研究方向为混凝土耐久性和工程新材料 E-mail:lhjiang@hhu.edu.cn
引用本文:    
陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
TAO Debiao, JIANG Linhua, JIN Ming, BAI Shuya, JIANG Shaobo. Silver/Silver Chloride Electrode Embedded in Concrete with an Application to Monitoring Chloride Ion Content. Materials Reports, 2017, 31(20): 101-106.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.022  或          https://www.mater-rep.com/CN/Y2017/V31/I20/101
1 蒋林华. 混凝土材料学[M]. 南京:河海大学出版社, 2006:301.
2 Hu D, Ma H Y, Yu H F, et al. Influence of mineral admixtures on chloride binding capability[J]. J Chin Ceram Soc, 2009,37(1):129(in Chinese).
胡蝶,麻海燕,余红发,等.矿物掺合料对混凝土氯离子结合能力的影响[J].硅酸盐学报,2009,37(1):129.
3 Liu Junlong, Yu Hongfa, Sun Wei, et al. Research on influencing factors of chloride ion binding capability of concrete[J]. Bull Chin Ceram Soc, 2011,30(1):172(in Chinese).
刘俊龙,余红发,孙伟,等. 混凝土氯离子结合能力的影响因素规律性研究[J]. 硅酸盐通报, 2011,30(1):172.
4 Cheng Zheng, Yang Lufeng, Wang Yi, et al. Influence of compound admixture on chloride diffusion in high-performance concrete[J]. J Guangxi University(Nat Sci Ed), 2010(6):908(in Chinese).
陈正,杨绿峰,王燚,等. 复合外掺料高性能混凝土的氯离子扩散性能[J]. 广西大学学报(自然科学版),2010(6):908.
5 Zhan Binggen, Sun Wei, Sha Jiangfang, et al. Chloride diffusion and binding capacity in concrete suffered from ASR[J]. J Southeast University(Nat Sci Ed),2006(6):956(in Chinese).
詹炳根,孙伟,沙建芳,等. 碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J]. 东南大学学报(自然科学版), 2006(6):956.
6 Sun Congtao, Song Hua, Niu Ditao, et al. Chloride binding capacity of fly ash concrete[J]. J Building Mater, 2016(1):35(in Chinese).
孙丛涛,宋华,牛荻涛,等. 粉煤灰混凝土的氯离子结合性能[J]. 建筑材料学报, 2016(1):35.
7 Zhao Weixuan, Ba Hengjing. Application of the Ag/AgCl chloride sensor in concrete[J]. J Funct Mater,2010,41(2):371(in Chinese).
赵炜璇,巴恒静. Ag/AgCl氯离子传感器在混凝土中的应用[J]. 功能材料, 2010,41(2):371.
8 Xu Mingjiao. Measuring of chloride diffusivity in cement paste using Ag/AgCl probe[J]. Concrete, 2012(11):36(in Chinese).
许明姣. Ag/AgCl电极测量水泥浆体中氯离子扩散系数[J]. 混凝土, 2012(11):36.
9 Jin M, Xu J, Jiang L, et al. Investigation on the performance cha-racteristics of chloride selective electrode in concrete[J]. Ionics, 2015,21(10):2981.
10Jin M, Xu J, Jiang L, et al. Electrochemical characterization of a solid embeddable Ag/AgCl reference electrode for corrosion monitoring in reinforced concrete[J]. Electrochemistry, 2014,82(12):1040.
11Jin M, Jiang L, Xu J, et al. Electrochemical characterization of solid Ag/AgCl reference electrode with different electrolytes for corrosion monitoring of steel in concrete[J]. Electrochemistry,2016,84(6):383.
12Tao Debiao, Jiang Linhua, Jin Ming, et al. Study on the perfor-mance of chloride ion selective electrode in the environment of concrete[J]. Concrete, 2016(7):69(in Chinese).
陶德彪,蒋林华,金鸣,等. 基于混凝土环境的氯离子选择性电极的性能研究[J]. 混凝土,2016(7):69.
13Climent-Llorca M A, Viqueira-Pérez E, Ma L A. Embeddable Ag/AgCl sensors for in-situ monitoring chloride contents in concrete[J]. Cem Concr Res,1996,26(8):1157.
14Du Baozhong, Li Xiangyang, Yan Ye, et al. Development and application of non-liqiuid-junction exposed Ag/AgCl reference electrode[J]. Chem Anal Meterage, 2006(5):58(in Chinese).
杜宝中,李向阳,闫烨,等. 无液接裸露式Ag/AgCl参比电极的研制及应用[J]. 化学分析计量, 2006(5):58.
15Zhang Yan, Song Yusu, Wang Yuansheng. Performance of silver-silver chloride reference probe[J]. J Chin Soc Corros Protect, 2007,27(3):176(in Chinese).
张燕,宋玉苏,王源升. Ag/AgCl参比电极性能研究[J]. 中国腐蚀与防护学报, 2007,27(3):176.
16Atkins C P, Scantlebury J D, Nedwell P J, et al. Monitoring chloride concentrations in hardened cement pastes using ion selective electrodes[J]. Cem Concr Res,1996,26(2):319.
17Atkins C P, Carterb M A, Scantlebury J D. Sources of error in using silver/silver chloride electrodes to monitor chloride activity in concrete[J]. Cem Concr Res, 2001,31: 1207.
18蒋林华,金鸣,陶德彪,等. 快速生成致密氯化银镀层的方法及其制备的氯化银电极:中国, 201510439587.0[P]. 2015-11-18.
19Sun Congtao, Niu Ditao. Further study on chloride ion diffusion properties in concrete[J]. Ind Constr, 2010,40(9):80(in Chinese).
孙丛涛,牛荻涛. 混凝土中氯离子扩散性能的深入探讨[J]. 工业建筑, 2010,40(9):80.
20Tang L, Nilsson L. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cem Concr Res,1993,23:247.
21Yuan Q, Shi C, De Schutter G D, et al. Chloride binding of cement-based materials subjected to external chloride environment—A review[J]. Constr Building Mater, 2009,23(1):1.
[1] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[4] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[5] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[6] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[7] 王云潇, 刘元雪, 姚未来, 穆锐, 龚宏伟. 基于阵列信号空频域分析的隧道衬砌开裂声波定位法[J]. 材料导报, 2024, 38(20): 24030104-9.
[8] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[9] 刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
[10] 杜姗, 魏云航, 谭宇浩, 周金利, 杨红英, 周伟涛. 蚕丝基柔性可穿戴传感器在人体健康监测中的研究进展[J]. 材料导报, 2024, 38(12): 22100190-11.
[11] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[12] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[13] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[14] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[15] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed