Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 19-27    https://doi.org/10.11896/j.issn.1005-023X.2017.019.003
  材料综述 |
化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*
龙晓阳1,2, 俄松峰2, 李朝威2, 李涛涛2, 吴隽1, 姚亚刚2
1 武汉科技大学耐火材料与冶金国家重点实验室,武汉430081;
2 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215000
A Review of Chemical Vapor Deposition for Synthesis of Boron Nitride Nanotubes:Reaction Devices, Vapor Sources and Catalysts
LONG Xiaoyang1,2, E Songfeng2, LI Chaowei2 , LI Taotao2 , WU Jun1, YAO Yagang2
1 The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081;
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215000
下载:  全 文 ( PDF ) ( 1911KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化硼纳米管(BNNTs)具有优良的耐高温、抗氧化、防辐射、绝缘和导热性能,因此,在航空航天、辐射屏蔽、热界面材料以及深紫外发射等领域具有潜在的应用前景。然而,高品质BNNTs的可控制备和批量生产仍然是学术和工业界的重大挑战。在BNNTs的众多制备方法中,化学气相沉积法(CVD)是最有潜力实现其可控制备的方法之一。但是,科学家们对于CVD法制备BNNTs的催化机理和影响因素尚未形成共识。鉴于此,文章从反应装置、氮源、硼源和催化剂4个方面对CVD法制备BNNTs进行了综述,并系统总结了相应的规律。在此基础上,分析了目前BNNTs可控制备中存在的问题,并对CVD法在BNNTs可控制备中的作用进行了展望,以期对今后BNNTs的制备起到借鉴作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙晓阳
俄松峰
李朝威
李涛涛
吴隽
姚亚刚
关键词:  氮化硼纳米管  化学气相沉积  硼源  催化剂    
Abstract: Boron nitride nanotubes (BNNTs) have great application potential in aerospace radiation shielding materials, thermal interface materials, deep ultraviolet emission materials and many other fields due to their excellent performances—oxidation resistance, radiation shield, heat conduction and so forth. However, BNNTs’ controllable and large scale preparation still faces an enormous challenge. Among the different kinds of BNNTs’ preparation methods, chemical vapor deposition (CVD) is one of the most promising methods for its controllable preparation. Nevertheless, scientists have not reached a consensus on the growth mechanism and influencing factors of BNNTs’ synthesis by CVD. Hence, this article provides a review on preparation of BNNTs by CVD, and a discussion about the effects of reaction devices, nitrogen sources, boron sources and catalysts. Besides, the unsettled issues and a prospect for the controllable synthesis of BNNT by CVD are also proposed.
Key words:  boron nitride nanotube    chemical vapor deposition    boron source    catalyst
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O613  
  TB321  
基金资助: *国家自然科学基金(51522211);中国科学院苏州纳米技术与仿生研究所纳米器件与应用重点实验室项目(15QT02)
作者简介:  龙晓阳:男,1991年生,硕士研究生,主要从事氮化硼纳米材料方面的研究 E-mail:935683356@qq.com 姚亚刚:通讯作者,男,1980年生,博士,研究员,主要从事电子封装材料方面的研究 E-mail:ygyao2013@sinano.ac.cn 吴隽:通讯作者,男,1967年生,博士,教授,主要从事半导体薄膜材料方面的研究 E-mail:woojun@tom.com
引用本文:    
龙晓阳, 俄松峰, 李朝威, 李涛涛, 吴隽, 姚亚刚. 化学气相沉积法制备氮化硼纳米管的研究进展:反应装置、气源材料、催化剂*[J]. 《材料导报》期刊社, 2017, 31(19): 19-27.
LONG Xiaoyang, E Songfeng, LI Chaowei , LI Taotao , WU Jun, YAO Yagang. A Review of Chemical Vapor Deposition for Synthesis of Boron Nitride Nanotubes:Reaction Devices, Vapor Sources and Catalysts. Materials Reports, 2017, 31(19): 19-27.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.003  或          https://www.mater-rep.com/CN/Y2017/V31/I19/19
1 Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56.
2 Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron-nitride nanotubes[J]. Phys Rev B,1994, 49(7):5081.
3 Chopra N G, Luyken R J, et al. Boron-nitride nanotubes[J]. Scien-ce,1995,269(5226):966.
4 Lee C H, Xie M, Kayastha V, et al. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition[J]. Chem Mater,2010,22(5):1782.
5 Ishigami M, Aloni S, Zettl A. Properties of boron nitride nanotubes[J]. Scanning Tunn Microsc/Spectrosc Relat Tech,2003,696:94.
6 Zhi C Y, Bando Y, Tang C C, et al. Perfectly dissolved boron nitride nanotubes due to polymer wrapping[J]. J Am Chem Soc,2005,127(46):15996.
7 Lee C H, Bhandari S, Tiwari B, et al. Boron nitride nanotubes: Recent advances in their synthesis, functionalization, and applications[J]. Molecules,2016,21(7):922.
8 Chang C W, Fennimore A M, Afanasiev A, et al. Isotope effect on the thermal conductivity of boron nitride nanotubes[J]. Phys Rev Lett,2006,97(8):085901.
9 Cohen M L, Zettl A. The physics of boron nitride nanotubes[J]. Phys Today,2010,63(11):34.
10 Engels R, Kemmerling G, Schelten J. Boron nitride, a neutron scintillator with deficiencies[C]∥IEEE Nuclear Science Symposium Conference Record. IEEE,2005:1318.
11 Tanur A E, Wang J S, Reddy A L M, et al. Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes[J]. J Phys Chem B,2013,117(16):4618.
12 Nigues A, Siria A, Vincent P, et al. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes[J]. Nat Mater,2014,13(7):688.
13 Kang J H, Sauti G, et al. Multifunctional electroactive nanocompo-sites based on piezoelectric boron nitride nanotubes[J]. ACS Nano,2015,9(12):11942.
14 Jakubinek M B, Niven J F, Johnson M B, et al. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites[J]. Phys Status Solidi A—Appl Mater Sci,2016, 213(8):2237.
15 Lee C H, Drelich J, Yap Y K. Superhydrophobicity of boron nitride nanotubes grown on silicon substrates[J]. Langmuir,2009,25(9):4853.
16 Boinovich L B, Emelyanenko A M, Pashinin A S, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings[J]. Langmuir,2012,28(2):1206.
17 Li J, Dai W, Chen M, et al. A novel single-source precursor for collapsed boron nitride nanotubes with high hydrogen storage capacity[J]. Funct Mater Lett,2016,9(06):1642001.
18 Salvetti A, Rossi L, Iacopetti P, et al. In vivo biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians[J]. Nanomedicine,2015,10(12):1911.
19 Ciofani G, Danti S, Nitti S, et al. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation[J]. Int J Pharm,2013,444(1-2):85.
20 Yamaguchi M, Meng F Q, Firestein K, et al. Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties[J]. Mater Sci Eng A,2014,604:9.
21 Lee C H, Qin S Y, Savaikar M A, et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold ouantum dots[J]. Adv Mater,2013,25(33):4544.
22 Hao B, Asthana A, Hazaveh P K, et al. New flexible channels for room temperature tunneling field effect transistors[J]. Sci Rep,2016,6:20293.
23 Parashar V, Durand C P, Hao B Y, et al. Switching behaviors of graphene-boron nitride nanotube heterojunctions[J]. Sci Rep,2015,5:12238.
24 Shuai C J, Gao C D, Feng P, et al. Boron nitride nanotubes reinforce tricalcium phosphate scaffolds and promote the osteogenic differentiation of mesenchymal stem cells[J]. J Biomed Nanotechnol,2016, 12(5):934.
25 Grant J T, Carrero C A, Goeltl F, et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354(6319):1570.
26 Loiseau A, Willaime F, Demoncy N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge[J]. Phys Rev Lett,1996,76(25):4737.
27 Cumings J, Zettl A. Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chem Phys Lett,2000,318(4-5):497.
28 Golberg D, Bando Y, Eremets M, et al. Nanotubes in boron nitride laser heated at high pressure[J]. Appl Phys Lett,1996,69(14):2045.
29 Lee R S, Gavillet J, De La Chapelle M L, et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration[J]. Phys Rev B,2001,64(12):121405.
30 Naumov V G, Kosyrev F K, Vostrikov V G, et al. Synthesis of boron nitride multi-walled nanotubes by laser ablation technique[J]. Laser Phys,2009,19(5):1198.
31 Chen H, Chen Y, Liu Y, et al. Over 1.0mm-long boron nitride nanotubes[J]. Chem Phys Lett, 2008,463(1-3):130.
32 Yong Bae S, Won Seo H, Park J, et al. Boron nitride nanotubes synthesized in the temperature range 1 000—1 200 ℃[J]. Chem Phys Lett,2003,374(5-6):534.
33 Li L H, Chen Y, Glushenkov A M. Synthesis of boron nitride nanotubes by boron ink annealing[J]. Nanotechnology,2010,21(10):105601.
34 Li L, Li L H, Chen Y, et al. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth[J]. Nanoscale Res Lett,2012,7:417.
35 Zhuang C, Xu H, Li L, et al. Systematic investigation of the ball milling-annealing growth and electrical properties of boron nitride nanotubes[J]. RSC Adv,2016,6(114):113415.
36 Golberg D, Bando Y, Kurashima K, et al. MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates[J]. Chem Phys Lett,2000,323(1-2):185.
37 Han W Q, Bando Y, Kurashima K, et al. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction[J]. Appl Phys Lett,1998,73(21):3085.
38 Wang Y, Yamamoto Y, Kiyono H, et al. Highly ordered boron nitride nanotube arrays with controllable texture from ammonia borane by template-aided vapor-phase pyrolysis[J]. J Nanomater, 2009,2008(6):72.
39 Zhi C Y, Bando Y, Tan C C, et al. Effective precursor for high yield synthesis of pure BN nanotubes[J]. Solid State Commun,2005,135(1-2):67.
40 Ahmad P, Khandaker M U, Khan Z R, et al. Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review[J]. RSC Adv,2015,5(44):35116.
41 Lee C H, Wang J, Kayatsha V K, et al. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition[J]. Nanotechnology,2008,19(45):455605.
42 Ahmad P, Khandaker M U, Amin Y M. Synthesis of boron nitride nanotubes by argon supported thermal chemical vapor deposition[J]. Physica E,2015,67:33.
43 Li L, Liu X W, Li L H, et al. High yield BNNTs synthesis by promotion effect of milling-assisted precursor[J]. Microelectron Eng,2013,110:256.
44 Wang L J, Li T T, Ling L, et al. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition[J]. Chem Phys Lett,2016,652:27.
45 Tang C C, Bando Y, Sato T. Synthesis and morphology of boron nitride nanotubes and nanohorns[J]. Appl Phys A,2002,75(6):681.
46 Huang Y, Lin J, Tang C, et al. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm[J]. Nanotechnology,2011, 22(14):145602.
47 Singhal S K, Srivastava A K, Gupta A K, et al. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method[J]. J Nanopart Res,2010,12(7):2405.
48 Seo D, Kim J, Park S H, et al. Synthesis of boron nitride nanotubes using thermal chemical vapor deposition of ball milled boron powder[J]. J Ind Eng Chem,2013,19(4):1117.
49 Wen G, Zhang T, Huang X X, et al. Synthesis of bulk quantity BN nanotubes with uniform morphology[J]. Scr Mater,2010,62(1):25.
50 Pan A, Chen Y. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method[J]. Nanoscale Res Lett,2014,9(1):555.
51 Li L H, Chen Y, Glushenkov A M. Boron nitride nanotube films grown from boron ink painting[J]. J Mater Chem,2010,20(43):9679.
52 Zhuang C C, Feng J, Xu H, et al. Synthesis of boron nitride nanotube films with a nanoparticle catalyst[J]. Chin Chem Lett,2016,27(6):871.
53 Kalay S, Yilmaz Z, Sen O, et al. Synthesis of boron nitride nanotubes and their applications[J]. Beilstein J Nanotechnol,2015,6:84.
54 Su C Y, Chu W Y, Juang Z Y, et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts[J]. J Phys Chem C,2009,113(33):14732.
55 Li L H, Li C P, Chen Y. Synthesis of boron nitride nanotubes, bamboos and nanowires[J]. Physica E, 2008,40(7):2513.
56 Yu J, Li B C P, Zou J, et al. Influence of nitriding gases on the growth of boron nitride nanotubes[J]. J Mater Sci,2007,42(11):4025.
57 Chen Y, Fitz Gerald J, Williams J S, et al. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling[J]. Chem Phys Lett,1999,299:260.
58 Fitz Gerald J D, Chen Y, Conway M J. Nanotube growth during annealing of mechanically milled boron[J]. Appl Phys A,2003,76(1):107.
59 Ma R, Bando Y, Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts[J]. Chem Phys Lett,2001,337(1-3):61.
60 Ma R Z, Bando Y, Sato T, et al. Thin boron nitride nanotubes with unusual large inner diameters[J]. Chem Phys Lett,2001,350(5-6):434.
61 Ma R Z, Bando Y, Sato T, et al. Growth, morphology, and structure of boron nitride nanotubes[J]. Chem Mater,2001,13(9):2965.
62 Lourie O R, Jones C R, Bartlett B M, et al. CVD growth of boron nitride nanotubes[J]. Chem Mater, 2000,12(7):1808.
63 Kim M J, Chatterjee S, Kim S M, et al. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition[J]. Nano Lett,2008,8(10):3298.
64 Batterman S, Kovacs E. Threshold quantity criteria for risk management programs: Recommendations for toxic releases[J]. J Hazard Mater,2003,105(1-3):39.
65 Lin C C, Wang J D, Hsieh G Y, et al. Increased risk of death with congenital anomalies in the offspring of male semiconductor workers[J]. Int J Occupat Environ Health,2008,14(2):112.
66 Torres-Vega J J, Vasquez-Espinal A, Caballero J, et al. Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria[J]. Inorg Chem, 2014,53(7):3579.
67 Li Y, Zhou J E, Zhao K, et al. Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process[J]. Mater Lett,2009,63(20):1733.
68 Zhang J, Li Z Q, Xu J. Formation and structure of boron nitride nanotubes[J]. J Mater Sci Technol,2005,21(1):128.
69 Wang J, Gu Y, Zhang L, et al. Synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing method[J]. J Nanomater,2010,2010(1687-4110):80.
70 Li Y L, Cai B Q, Zhang J X. Preparation of BN nanotube by magnesiothermic reduction[J]. J Mater Eng,2008(10):85(in Chinese).
李永利, 蔡柏奇, 张久兴. 镁热还原制备BN纳米管[J]. 材料工程,2008(10):85.
71 Deepak F L, Vinod C P, Mukhopadhyay K, et al. Boron nitride nanotubes and nanowires[J]. Chem Phys Lett,2002,353(5-6):345.
72 Tay R Y, Li H, Tsang S H, et al. Facile synthesis of millimeter-scale vertically aligned boron nitride nanotube forests by template-assisted chemical vapor deposition[J]. Chem Mater,2015,27(20):7156.
73 Kalay S, Yilmaz Z. Synthesis of boron nitride nanotubes from unprocessed colemanite[J]. Beilstein J Nanotechnol,2013,4:843.
74 Matveev A T, Firestein K L, Steinman A E, et al. Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals[J]. J Mater Chem A,2015,3(41):20749.
75 Tang C, Bando Y, Sato T, et al. A novel precursor for synthesis of pure boron nitride nanotubes[J]. Chem Commun,2002(12):1290.
76 Nithya J S M, Pandurangan A. Efficient mixed metal oxide routed synthesis of boron nitride nanotubes[J]. RSC Adv,2014,4(51):26697.
77 Pakdel A, Zhi C Y, Bando Y, et al. A comprehensive analysis of the CVD growth of boron nitride nanotubes[J]. Nanotechnology,2012,23(21):1215601.
78 Kim K S, Kingston C T, Hrdina A, et al. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies[J]. ACS Nano,2014,8(6): 6211.
79 Fathalizadeh A, Pham T, Mickelson W, et al. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma[J]. Nano Lett,2014,14(8):4881.
80 Huo K F, Hu Z, Fu J J, et al. Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe-B nanoparticles with nitrogen/ammonia mixture[J]. J Phys Chem B,2003, 107(41):11316.
81 Fu J J, Lu Y N, Xu H, et al. The synthesis of boron nitride nanotubes by an extended vapour-liquid-solid method[J]. Nanotechnology,2004,15(7):727.
82 Loh K P, Lin M, Yeadon M, et al. Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles[J]. Chem Phys Lett,2004,387(1-3):40.
83 Huo K F, Hu Z, Chen F, et al. Synthesis of boron nitride nanowires[J]. Appl Phys Lett,2002,80(19): 3611.
84 Su C Y, Juang Z Y, Chen K F, et al. Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD me-thods[J]. J Phys Chem C,2009,113(33):14681.
85 Guo L, Singh R N. Selective growth of boron nitride nanotubes by plasma-enhanced chemical vapor deposition at low substrate temperature[J]. Nanotechnology,2008,19(6):72.
86 Belkerk B E, Achour A, Zhang D Y, et al. Thermal conductivity of vertically aligned boron nitride nanotubes[J]. Appl Phys Express,2016,9(7):075002.
87 Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure[J]. Science,2007,317(5840):932.
88 Carlson O N, Lichtenberg R R, Warner J C. Solid solubilities of oxy-gen, carbon and nitrogen in yttrium[J]. J Less-Common Met,1974,35(2):275.
89 Wang L, Li T, Long X, et al. Bimetallic catalytic growth of boron nitride nanotubes[J]. Nanoscale, 2017,9(5):1816.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[3] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[4] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[5] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[6] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[7] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[10] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[11] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[12] 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
[13] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[14] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[15] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed