Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 112-115    https://doi.org/10.11896/j.issn.1005-023X.2017.010.023
  材料研究 |
还原氧化石墨烯-贵金属纳米复合物的制备及表征*
常梦洁,刘俊,杜慧玲
西安科技大学材料科学与工程学院, 西安 710054
Preparation and Characterization of Reduced Graphene Oxide-Noble Metal Nanocomposites
CHANG Mengjie, LIU Jun, DU Huiling
College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 1154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨和氯铂酸为前驱体,在油胺中简便地合成了还原氧化石墨烯-铂(Reduced graphene oxide-platinum, rGO-Pt)纳米复合物,并对其进行了表征。透射电子显微镜和光谱测试结果表明,铂纳米颗粒均匀分布在石墨烯表面,尺寸约为30 nm,铂纳米粒子为多孔隙结构,结晶性能良好,氧化石墨在高温下转变为还原氧化石墨烯。用此方法也可以制备还原氧化石墨烯-金(rGO-Au)或还原氧化石墨烯-银(rGO-Ag)的纳米复合物,金、银纳米颗粒呈球状,对可见光具有明显的表面等离子吸收。同时,油胺作为溶剂、贵金属盐的还原剂和表面活性剂,使制备过程简单、快捷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常梦洁
刘俊
杜慧玲
关键词:  石墨烯  铂纳米粒子  纳米复合物  高温合成    
Abstract: Reduced graphene oxide-platinum (rGO-Pt) nanocomposites were produced by high temperature synthetic process from the graphene oxide and H2PtCl6. Transmission electron microscopy and micro-spectrum results showd that Pt nanoparticles with a average diameter of 30 nm were uniformly distributed on the rGO surface. The Pt nanoparticles had porous structure with good crystallinity. GO was transferred to rGO at high temperature. With the similar method, rGO-Au or rGO-Ag nanocomposites could also be prepared, and the resulted composites exhibit typical surface plasmon resonance adsorption against visible light. In this method, oleylamine acted as solvent, reduction agent for metal salt and surfactant simultaneously. The synthetic process is simple, rapid, and has wide practical application prospect.
Key words:  graphene    Pt nanoparticles    nanocomposites    high temperature synthesis
发布日期:  2018-05-08
ZTFLH:  O611.4  
基金资助: *国家自然科学基金(21403165;21501140;51372197);陕西省自然科学基础研究计划项目(2015JQ2047;2016JQ2002);陕西省教育厅项目(15JK1453)
作者简介:  常梦洁:1987年生,博士,讲师,主要研究方向为有机无机杂化材料E-mail:mengjie_chang@xust.edu.cn
引用本文:    
常梦洁,刘俊,杜慧玲. 还原氧化石墨烯-贵金属纳米复合物的制备及表征*[J]. 材料导报编辑部, 2017, 31(10): 112-115.
CHANG Mengjie, LIU Jun, DU Huiling. Preparation and Characterization of Reduced Graphene Oxide-Noble Metal Nanocomposites. Materials Reports, 2017, 31(10): 112-115.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.023  或          https://www.mater-rep.com/CN/Y2017/V31/I10/112
1 Shen X, Wang Z, Wu Y, et al. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites [J]. Nano Lett,2016,16(6):3585.
2 Mao H Y, Laurent S, Chen W, et al. Graphene: Promises, facts, opportunities, and challenges in nanomedicine [J]. Chem Rev,2013,113(5):3407.
3 Georgakilas V, Tiwari J N, Kemp K C, et al. Noncovalent functio-nalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications [J]. Chem Rev,2016,116(9):5464.
4 Li N, Cao M, Hu C. Review on the latest design of graphene-based inorganic materials [J]. Nanoscale,2012,4(20):6205.
5 Xiao C, Goh T W, Qi Z, et al. Conversion of levulinic acid to γ-valerolactone over few-layer graphene-supported ruthenium catalysts [J]. ACS Catal,2016,6(2):593.
6 Sarno M, Cirillo C, Scudieri C, et al. Electrochemical applications of magnetic core-shell graphene-coated feco nanoparticles [J]. Ind Eng Chem Res,2016,55(11):3157.
7 Huisman E H, Shulga A G, Zomer P J, et al. High gain hybrid graphene-organic semiconductor phototransistors [J]. ACS Appl Mater Interf,2015,7(21):11083.
8 Ni Y, Chen L, Teng K, et al. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton [J]. ACS Appl Mater Interface,2015,7(21):11583.
9 Qi L, Xin Y, Zuo Z, et al. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage [J]. ACS Appl Mater Interface,2016,8(27):17245.
10 Du T, Zhang H D, Fan T X. Recent progress on graphene/metal composites [J]. Mater Rev:Rev,2015,29(3):121(in Chinese).
独涛, 张洪迪, 范同祥. 石墨烯/金属复合材料的研究进展 [J]. 材料导报:综述篇,2015,29(3):121.
11 Shang N, Papakonstantinou P, Wang P, et al. Platinum integrated graphene for methanol fuel cells [J]. J Phys Chem C,2010,114:15837.
12 Qiu J D, Wang G C, Liang R P, et al. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells [J]. J Phys Chem C,2011,115(31):15639.
13 Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of pt subnanoclusters on graphene nanosheet surface [J]. Nano Lett,2009,9(6):2255.
14 Yang Zijuan,Zhao Mengxi,Chen Sen, et al. Platinum-palladium bimetallic nanospheres supported on graphene nanosheets as enhanced electrocatalyst formethanol oxidation [J]. Chem Res,2014,3:273.
15 Du C, Hei X Z, Luo W, et al. Synthesis of 3D nitrogen-doped graphene supported AgPd nanocatalysts and application in catalytic dehydrogenation of formic acid for chemical hydrogen storage[J]. Sci Sin Chim,2016,46(5):487(in Chinese).
杜成, 黑秀泽, 罗威,等. N掺杂石墨烯负载AgPd纳米催化剂室温高效催化甲酸分解制氢 [J].中国科学,2016,46(5):487.
16 Kellici S, Acord J, Vaughn A, et al. Calixarene assisted rapid synthesis of silver-graphene nanocomposites with enhanced antibacterial activity [J]. ACS Appl Mater Interface,2016,8(29):19038.
17 Kumar D, Lee A, Lee T, et al. Ultrafast and efficient transport of hot plasmonic electrons by graphene for Pt free, highly efficient visible-light responsive photocatalyst [J]. Nano Lett,2016,16(3):1760.
18 Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous ca-talysts [J]. Coord Chem Rev,2016,312:99.
19 Luo Y, Kong F Y, Li C, et al. One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose [J]. Sens Actuators B,2016,234:625.
20 Rao D, Sheng Q, Zheng J. Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine [J]. Sens Actuators B,2016,236:192.
21 Yin P T, Shah S, Chhowalla M, et al. Design, synthesis,and chara-cterization of graphene-nanoparticle hybrid materials for bioapplications [J]. Chem Rev,2015,115(7):2483.
22 An’amt Mohamed Noor P R, Norazriena Yusoff, Huang Nay Ming, et al. Microwave synthesis of reduced graphene oxide decorated with silver nanoparticles for electrochemical determination of 4-nitrophenol [J]. Ceram Int,2016, doi.org/10.1016/j.ceramint.2016.09.026
23 Xin L, Yang F, Rasouli S, et al. Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization [J]. ACS Catal,2016,6(4):2642.
24 Lee Y H, Polavarapu L, Gao N, et al. Enhanced optical properties of graphene oxide-Au nanocrystal composites [J]. Langmuir,2012,28(1):321.
25 Mayavan S, Sim J B, Choi S M. Simultaneous reduction, exfoliation and functionalization of graphite oxide into a graphene-platinum na-noparticle hybrid for methanol oxidation [J]. J Mater Chem,2012,22(14):6953.
26 De I P P, Multigner M, et al. Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles [J]. J Appl Phys,2006,100(12):123915.
27 Li F, Du X Y, Yang R C. Synthesis of monodisperse Fe3O4 magnetite schistic hexagonal nanocrystals by polyol reduction method [J]. Chemical J Chinese Universities,2011,32(8):1688(in Chinese).
李芳, 杜雪岩, 杨瑞成. 多元醇还原法制备片状六边形Fe3O4纳米颗粒 [J]. 高等学校化学学报,2011,32(8):1688.
28 Wang C, Yin H, Chan R, et al. One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation [J]. Chem Mater,2009,21(3):433.
29 Polavarapu L, Venkatram N, Ji W, et al. Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses [J]. ACS Appl Mater Interface,2009,1(10):2298.
30 Liu J, Chang M J, Gou X C, et al. One-step synthesis of antibody-stabilized aqueous colloids of noble metal nanoparticles [J]. Colloids Surf A,2012,404(404):112.
31 Kavitha H J M K, Gopinath P, Philip R. Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties [J]. J Mater Chem,2013,1(23):3669.
32 Mourdikoudis S, Liz-Marzán L M. Oleylamine in nanoparticle synthesis [J]. Chem Mater,2013,25(9):1465.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[7] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[11] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[12] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[13] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[14] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[15] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed