Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 25030080-6    https://doi.org/10.11896/cldb.25030080
  空间润滑材料 |
低表面能氟碳聚合物及涂层的耐电子辐照特性研究
冯凯1, 霍丽霞1, 孙繁新2, 郭芳君1, 王世伟1, 苟世宁1, 周晖1, 高鸿3,*, 张凯锋1,*
1 兰州空间技术物理研究所真空技术与物理全国重点实验室,兰州 730000
2 北京空间飞行器总体设计部,北京 100094
3 中国空间技术研究院,北京 100094
Irradiation Properties of Low Surface Energy Fluorocarbon Polymer and Coating
FENG Kai1, HUO Lixia1, SUN Fanxin2, GUO Fangjun1, WANG Shiwei1, GOU Shining1, ZHOU Hui1, GAO Hong3,*, ZHANG Kaifeng1,*
1 National Key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
3 China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 7589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低表面能氟碳聚合物及涂层是一种有效阻止空间油脂润滑剂扩散迁移的关键材料,为空间高精度长寿命油脂润滑活动机构和重大工程任务及系统的稳定可靠运行提供了重要保障。采用真空电子辐照测试系统对氟碳聚合物辐照前后在不同金属基体表面形成的涂层的接触角、表面能,以及热分解温度、官能团、元素化学态和化学键等的变化进行了研究。结果表明:经过3.5×105 rad(Si)电子辐照后,聚合物涂层的表面能较辐照前仅增加了约1 mN/m,随着辐照剂量继续增加至9×106 rad(Si)和1.8×107 rad(Si),表面能变化不明显,趋于稳定。聚合物的TG曲线与辐照前的变化趋势相同,且分解温度较为接近;辐照后-C=O键、C-H键和C-F键等主要官能团的特征吸收峰的位置未发生明显变化;辐照前后氟碳聚合物材料的元素组成和特征峰位置相同,氟碳聚合物材料辐照后的特征峰值强度较辐照前略微减弱,但分子结构相对稳定,化学键未发生明显变化,仍具有优异的耐电子辐照特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯凯
霍丽霞
孙繁新
郭芳君
王世伟
苟世宁
周晖
高鸿
张凯锋
关键词:  氟碳聚合物  电子辐照  低表面能  涂层    
Abstract: Low surface energy fluorocarbon polymer and coating is a key material to prevent the diffusion and migration of space grease lubricants effectively, which can provide an important guarantee for space high-precision long-life grease lubrication moving mechanism and major enginee-ring tasks/systems to operate stably and reliably. Electron irradiation test of fluorocarbon polymer was carried out by vacuum irradiation test system. Contact angle and surface energy of fluorocarbon polymer coating on different metal substrates pre- and post-irradiation were studied. The alterations in thermal decomposition temperature, functional groups, elemental chemical states, and chemical bonds were examined pre- and post-irradiation. The results showed that the surface energy of the polymer coating just increased by 1 mN/m after irradiation with 3.5×105 rad(Si) electrons compared with that pre-irradiation. As the irradiation dose increased to 9×106 rad(Si) and 1.8×107 rad(Si), the change of surface energy was not obvious and tended to be stable. The TG curve of the polymer had the same variation trend as that pre-irradiation, and the decomposition temperature was relatively close. After irradiation, the positions of the characteristic absorption peaks of the main functional groups, such as -C=O, C-H and C-F bonds, did not change significantly. Before and after irradiation, the fluorocarbon polymer had the same elemental compositions and characteristic peak positions, while the peak intensity was slightly weakened. Thus, it is important that the molecular structure was relatively stable, and the chemical bonds had not varied significantly. It still exhibited excellent resistance to electron irradiation.
Key words:  fluorocarbon polymer    electron irradiation    low surface energy    coating
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51803083);国防科工局稳定支持基金(HTKJ2024KL510004)
通讯作者:  高鸿,博士,研究员,主要从事高分子材料方面的研究。gaohong_cast@sina.com
张凯锋,博士,研究员,主要从事空间机械润滑技术方面的研究。zhangkf510@sina.com   
作者简介:  冯凯,博士,高级工程师,主要从事空间机械润滑与表面工程方面的研究。
引用本文:    
冯凯, 霍丽霞, 孙繁新, 郭芳君, 王世伟, 苟世宁, 周晖, 高鸿, 张凯锋. 低表面能氟碳聚合物及涂层的耐电子辐照特性研究[J]. 材料导报, 2025, 39(15): 25030080-6.
FENG Kai, HUO Lixia, SUN Fanxin, GUO Fangjun, WANG Shiwei, GOU Shining, ZHOU Hui, GAO Hong, ZHANG Kaifeng. Irradiation Properties of Low Surface Energy Fluorocarbon Polymer and Coating. Materials Reports, 2025, 39(15): 25030080-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030080  或          https://www.mater-rep.com/CN/Y2025/V39/I15/25030080
1 Yuan J. Lubrication Engineering, 2006(3), 154 (in Chinese).
袁杰. 润滑与密封, 2006(3), 154.
2 Chen X W, Liang Y X. Lubrication Engineering, 2006, 31(6), 176 (in Chinese).
陈晓伟, 梁宇翔. 润滑与密封, 2006, 31(6), 176.
3 Jones W R, Jansen M J. Proceedings of the Institution of Mechanical Engineers, 2008, 222(8), 997.
4 Jones W R, Jansen M J. Handbook of lubrication and tribology:Lubrication for space application, CRC Press, US, 1992, pp. 1.
5 Roberts E W. In:European Symposium 7th Space Mechanisms and Tribology. The Netherlands, 1997, pp. 239.
6 Ke H J. Study on the characteristics of surface lubrication under lubricant migration. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2016 (in Chinese).
柯和继. 润滑油爬移对表面润滑特性的影响. 博士学位论文, 南京航空航天大学, 2016.
7 Zaretsky E V. Tribology International, 1990, 23(2), 75.
8 Dai Q W, Huang W, Wang X L. Surface Technology, 2014, 43(6), 125(in Chinese).
戴庆文, 黄巍, 王晓雷. 表面技术, 2014, 43(6), 125.
9 Zisman W A.Contact angle, wettability, and adhesion, advances in chemistry series 43, American Chemical Society:Washington DC, 1964, pp. 21.
10 Shafrin E G, Zisman W A. The Journal of Physical Chemistry, 1960, 64(5), 519.
11 Honda K, Morita M, Otsuka H, et al. Macromolecules, 2005, 38, 5699.
12 Honda K, Morita M, Sasaki O, et al. Macromolecules, 2010, 43, 454.
13 Gu Z X. Study on the surface properties of fluorinated (methyl) acrylate copolymer. Ph. D. Thesis, Suzhou University, China, 2017(in Chinese).
顾子旭. 含氟(甲基)丙烯酸酯共聚物表面特性研究. 博士学位论文, 苏州大学, 2017.
14 Koberstein J T. Journal of Ploymer Science Part B:Polym Physics, 2004, 42, 2942.
15 Tongkhundam Y, Sirivat A, Brostow W. Polymer, 2004, 45(26), 8731.
16 Wang X L, Ye Q, Liu J X, et al. Journal Colloid Interface Science, 2010, 351, 261.
17 Huang Y, Li J Y, Zhang D G, et al. Materials Reports, 2024, 38(4),1(in Chinese).
黄勇,李俊越,张栋葛,等. 材料导报,2024, 38(4),1.
18 Li H, Yao M, Lai J, et al. Materials Reports, 2023, 37(2), 1(in Chinese).
李辉,姚敏,赖娟,等. 材料导报,2023, 37(2),1.
19 Fan H F, Guo Z G. Materials Reports, 2022, 36(7), 1(in Chinese).
范海峰,郭志光. 材料导报,2022, 36(7), 1.
20 Hou J X, Ding W W, Feng Y C, et al. Polymers, 2017, 9, 1.
21 Barrier coating solution, lubricant migration deterring. Standards, MIL-B-81744A, 1976.
22 Hampson M, Wardzinski B. In:16th European Space Mechanisms and Tribology Symposium. Bilbao, Spain, 2015, pp. 1.
23 Buttery M, Hampson M, Kent A, et al. Development of advanced lubricants for space mechanisms based on ionic liquids. Ph. D. Thesis, University of Hertfordshire, UK, 2017.
24 Feng K, Guo F J, Huo L X, et al. Vacuum and Cryogenics, 2024, 30(1), 64(in Chinese).
冯凯, 郭芳君, 霍丽霞, 等. 真空与低温, 2024, 30(1), 64.
25 Pei M L, Huo L X, Zhao X M, et al. Applied Surface Science, 2020, 507, 145138.
26 Pei M L, Huo L X, Zhang K F, et al. Colloids and Surfaces A, 2020, 585, 123984.
27 Pei M L, Pan C O, Wu D, et al. Applied Clay Science, 2020, 189, 105546.
28 Zhai R Q, Ren G H, Tian D B, et al. Vacuum, 2019, 56(1), 72(in Chinese).
翟睿琼, 任国华, 田东波, 等. 真空, 2019, 56(1), 72.
29 Zhao X H, Shen Z G, Wang Z T, et al. Acta Aeronautica et Astronautica Sinica, 2001, 23(22), 235(in Chinese).
赵小虎, 沈志刚, 王忠涛, 等. 航空学报, 2001, 23(22), 235.
30 Owens D K, Wendt R C. Journal of Applied Polymer Science, 1969, 13(8), 1741.
31 Morra M, Occhiello E, Carbassi F. Advances in Colloid and Interface Science, 1990, 32, 79.
32 Li X W, Du S M, Yan J Y, et al. Materials Reports, 2024, 38(19), 1(in Chinese).
李雪伍,杜少萌,闫佳洋,等. 材料导报,2024, 38(19), 1.
33 Ohagan D. Chemical Society Reviews, 2008, 37(2), 308.
34 Ameduri B. Progress in Polymer Science, 2001, 26(1), 105.
35 Jung S, Chuluunbandi K, Kim Y, et al. Journal of Ploymer Science Part A:Polymer Chemistry, 2018, 56(23), 2672.
36 Yang T T, Peng H, Cheng S Y, et al. Journal of Applied Polymer Science, 2007, 104(5), 3277.
37 Chen S L, Sheu Y L, Sheu J. Journal of Applied Polymer Science, 1997, 63(7), 903.
38 Saidi S, Gulttard F, Guimon C. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(17), 3737.
39 Li K, Wu P P, Han Z W. Ploymer, 2002, 43(14), 4079.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 王健, 张永, 高津. 风电机组叶片涂层沙蚀效应的风洞试验研究[J]. 材料导报, 2025, 39(9): 23120009-5.
[3] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[4] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[5] 俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
[6] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[7] 高峰, 郭策安, 张健. 身管内壁铬钽及其合金涂层研究进展[J]. 材料导报, 2025, 39(7): 24010200-8.
[8] 范锡宇, 赵珍, 马剑平, 周雪琴. 多层结构绿色植被高光谱伪装材料的设计与制备[J]. 材料导报, 2025, 39(7): 24030086-8.
[9] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[10] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[11] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[12] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[13] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[14] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[15] 豆裕, 范同祥. 高温太阳光谱选择性吸收涂层的研究进展[J]. 材料导报, 2025, 39(14): 24060008-11.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed