Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25020122-12    https://doi.org/10.11896/cldb.25020122
  金属与金属基复合材料 |
航空复杂微孔道结构的磨粒流加工技术研究进展
李斌1,†, 耿梦琦1,†, 王志军2,*, 黄杰光3, 王立斐4, 徐婷婷1,*
1 西北工业大学化学与化工学院,西安 710129
2 西北工业大学材料学院,西安 710072
3 西安邮电大学现代邮政学院,西安 710121
4 中国航发北京航空材料研究院先进高温结构材料重点实验室,北京 100095
Research Progress of Abrasive Flow Machining in the Processing of Complex Microporous Structures Materials for Aeronautic Applications
LI Bin1,†, GENG Mengqi1,†, WANG Zhijun2,*, HUANG Jieguang3, WANG Lifei4, XU Tingting1,*
1 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
3 School of Modern Post, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
4 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 53772KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着航空航天、汽车制造等加工领域对机械零件加工质量和精度要求的不断提高,零部件的表面质量对精密装配和服役性能起着至关重要的作用。零部件表面的微小毛刺或划痕都有可能导致机械系统稳定性下降,影响航空设备的使用寿命和安全。尤其是针对航空复杂微孔道结构件的加工,传统热成型、机械加工成型以及增材制造成型均具有一定的局限性,因此,发展表面光整后处理技术是提高零件性能的一个重要手段。磨粒流加工(Abrasive flow machining,AFM)工艺因其对复杂曲面和通孔型内表面具有较好的后处理效果,受到广泛研究关注。本文将围绕磨粒流加工技术在复杂难加工微孔道零部件表面处理问题,归纳总结磨粒流加工技术的核心影响因素,并重点介绍磨粒流加工技术在涡轮叶片气膜孔、燃油喷嘴和伺服阀等微孔道类零件加工领域的最新研究进展,最后分析讨论磨粒流加工技术尚存在的问题和未来的可能发展方向。本文旨在为航空领域复杂结构件的磨粒流表面处理等技术的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李斌
耿梦琦
王志军
黄杰光
王立斐
徐婷婷
关键词:  磨粒流加工(AFM)  表面光整  后处理  微孔道复杂结构  增材制造    
Abstract: With increasing demands for machining precision in aerospace and automotive components, surface quality has emerged as a decisive factor for precision assembly and service performance. Sub-micron surface defects, including burrs and scratches, can induce decrease in the stability of mechanical system, thereby affecting the safety of aviation equipment. Specifically, there have inherent limitations for the application of aerospace in the production of complex micro-porous structures, such as conventional methods like hot forming, machining, and additive manufacturing with their own limitations. Therefore, developing surface finishing technology is an important method to improve the performance of parts. Abrasive flow machining (AFM) has gained significant attention for its effective post-processing of complex, curved and through-hole internal surfaces. This study systematically investigates AFM applications for enhancing the surface quality of microporous components in aerospace applications. Key influencing factors are analyzed and summarized, with emphasis on recent advancements in processing turbine blade cooling holes, fuel nozzles, and servo valve micro-channels, etc. Current technical limitations are discussed as well, and the strategies of future development is proposed. The findings provide new insights into precision surface treatment technologies for complex aerospace components, offering practical guidance for performance optimization in defense and aviation industries.
Key words:  abrasive flow machining (AFM)    surface finishing    post processing    complex structure of micropores    additive manufacturing
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  O69  
基金资助: 陕西省自然科学基金 (2023-JC-QN-0547)
通讯作者:  * 王志军,西北工业大学凝固技术国家重点实验室教授,主要研究领域涉及凝固理论与技术、金属增材制造后处理。zhjwang@nwpu.edu.cn
徐婷婷,西北工业大学化学与化工学院教授、博士研究生导师。目前主要从事高分子材料、光电材料等方面的研究工作。tingtingxu@nwpu.edu.cn   
作者简介:  †共同第一作者
李斌,西北工业大学化学与化工学院硕士研究生,主要研究领域为功能高分子材料以及磨粒流加工的磨料研发。
耿梦琦,西北工业大学化学与化工学院博士研究生,主要研究领域为钙钛矿太阳能电池。
引用本文:    
李斌, 耿梦琦, 王志军, 黄杰光, 王立斐, 徐婷婷. 航空复杂微孔道结构的磨粒流加工技术研究进展[J]. 材料导报, 2026, 40(1): 25020122-12.
LI Bin. Research Progress of Abrasive Flow Machining in the Processing of Complex Microporous Structures Materials for Aeronautic Applications. Materials Reports, 2026, 40(1): 25020122-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020122  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25020122
1 Wei H B, Wang X Y, Gao H. Metal Working (Metal Cutting), 2022, 73(10), 93 (in Chinese).
魏海波, 王续跃, 高航. 金属加工(冷加工), 2022, 73(10), 93.
2 Gradl P R, Greene S E, Protz C, et al. In: 2018 Joint Propulsion Conference. Cincinnati OH, 2018, pp. 4625.
3 Asala G, Andersson J, Ojo O A. Materials Science and Engineering: A, 2018, 738, 111.
4 Gasser A, Backes G, Kelbassa I, et al. Laser Technik Journal, 2010, 7, 58.
5 Gao H, Peng S, Wang X P. Aeronautical Manufacturing Technology, 2019, 62(9), 14 (in Chinese).
高航, 彭灿, 王宣平. 航空制造技术, 2019, 62(9), 14.
6 Özerkan H B, Çoğun C. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9), 385.
7 Wang H Q, Guo Y, Wang X P, et al. Materials and Manufacturing Processes, 2024, 39(13), 1894.
8 Kumar R, Komma V R. Engineering Research Express, 2024, 6(1), 012504.
9 Zheng C X, Chen S N, Zhang X L. Surface Technology, 2024, 53(17), 17 (in Chinese).
郑宸曦, 陈书凝, 张鑫龙. 表面技术, 2024, 53(17), 17.
10 Goyal A, Singh H, Goyal R, et al. Materials Today: Proceedings, 2022, 56, 3065.
11 Singh P, Singh L, Singh S. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2022, 236(6), 2765.
12 Dang J N, Lei L M, Shi L, et al. Aeronautical Manufacturing Technology, 2019, 62(7), 79 (in Chinese).
党稼宁, 雷力明, 石磊, 等. 航空制造技术, 2019, 62(7), 79.
13 Li J Y, Sui T, Lu H, et al. International Journal of Advanced Manufacturing Technology, 2022, 121(1-2), 683.
14 Zhang C G, Zhang Y, Zhang F H, et al. Journal of Mechanical Engineering, 2015, 51(7), 188 (in Chinese).
张成光, 张勇, 张飞虎, 等. 机械工程学报, 2015, 51(7), 188.
15 Song W, Wei Q L, Dai Y, et al. Manufacturing Technology & Machine Tool, 2015, 65(8), 118 (in Chinese).
宋卫, 袁巧玲, 戴勇, 等. 制造技术与机床, 2015, 65(8), 118.
16 Jia S, Han J, Li G, et al. Journal of Alloys and Compounds, 2024, 985, 174077.
17 Basha S M, Sankar M R, Venkaiah N. Journal of Manufacturing Processes, 2024, 131, 844.
18 Arora K, Rathore S S, Sharma V. Journal of Materials Engineering and Performance, 2024, 34, 1.
19 Peng C, Xu Q, Ding L, et al. International Journal of Mechanical Sciences, 2024, 262, 108726.
20 Ansari I A, Kar K K, Ramkumar J. Journal of Manufacturing Processes, 2023, 101, 219.
21 Om H, Singh H, Vashishtha G. Engineering Research Express, 2024, 6(3), 035520.
22 Zhang B, Wang X Y, Jiang N, et al. Journal of Materials Research and Technology, 2025, 35, 2755.
23 Fan W L, Sun Y L, Su Q H, et al. The International Journal of Advanced Manufacturing Technology, 2023, 127(1), 253.
24 LI Y G, Song G Z, Hou B W, et al. Journal of Physics: Conference Series, 2021, 1884(1), 012002.
25 Jain R K, Jain V K. Journal of Materials Processing Technology, 2000, 108(1), 62.
26 Wang A C, Weng S H. Journal of Materials Processing Technology, 2007, 192, 486.
27 Fang M H, Yu T, Xi F F. Advances in Manufacturing, 2022, 10(1), 143.
28 Tadi S P, Mamilla R S. Materials Letters, 2025, 389, 138376.
29 Om H, Singh H, Vashishtha G. Engineering Research Express, 2024, 6(3), 035520.
30 Toykoc H, Basu S, De-Meter E C. The International Journal of Advanced Manufacturing Technology, 2025, 137(3), 1891.
31 Fletcher A J, Fioravanti A. Mechanical Engineering Science, 1996, 02, 195.
32 Davies P J, Fletcher A J. Mechanical Engineering Science, 1995, 209(6), 409.
33 Zhang B C, Qiao Y, Khiabani N, et al. Manufacturing Processes, 2022, 73, 248.
34 Wan S, Ang Y J, Sato T, et al. Advanced Manufacturing Technology, 2014, 71(5), 1077.
35 Wang A C, Tsai L, Liang K Z, et al. Transactions of Nonferrous Metals Society of China, 2009, 19, 250.
36 Uhlmann E, Schmiedel C, Wendler J. Procedia CIRP, 2015, 31, 209.
37 Fu Y Z, Gao H, Yan Q S, et al. Advanced Manufacturing Technology, 2020, 107(7), 3569.
38 Bouland C, Urlea V, Beaubier K, et al. Materials Processing Technology, 2019, 273, 116262.
39 Cheng K, Shao Y Z, Bodenhorst R, Jadva M. Manufacturing Science and Engineering, 2017, 139, 8.
40 Kheradmand S, Esmailian M, Fatahy A. Results in Physics, 2016, 6, 568.
41 Mohammadian N, Turenne S, Brailovski V. Materials Processing Technology, 2018, 252, 728.
42 Gao H, Peng S, Wang X P. Aeronautical Manufacturing Technology, 2019, 62(9), 14 (in Chinese).
高航, 彭灿, 王宣平. 航空制造技术, 2019, 62(9), 14.
43 Song J B, Yi H Y. Tool Engineering, 2020, 57(12), 82 (in Chinese).
宋金榜, 易海云. 工具技术, 2020, 57(12), 82.
44 Yao C Y, Zhang Z, Zhu H R. Acta Aeronautica ET Astronautica Sinica, 2024, 45(24), 141 (in Chinese).
姚春意, 张正, 朱惠人. 航空学报, 2024, 45(24), 141.
45 Wang L, Zhang G W, Guo Y F. Aeronautical Manufacturing Technology, 2018, 61(15), 78 (in Chinese).
王力, 张国伟, 郭永丰. 航空制造技术, 2018, 61(15), 78.
46 Wang H J, Cao Z Y, Zhang Y J. Manufacturing Technology & Machine Tool, 2022, 72(9), 69 (in Chinese).
王浩杰, 曹自洋, 张洋精. 制造技术与机床, 2022, 72(9), 69.
47 Tong H, Li Y, Li B Q. Aeronautical Manufacturing Technology, 2021, 64(18), 34 (in Chinese).
佟浩, 李勇, 李宝泉. 航空制造技术, 2021, 64(18), 34.
48 Pan Z F, Fu J Y, Zhang M Q. Aeronautical Manufacturing Technology, 2020, 63(4), 14 (in Chinese).
潘志福, 傅军英, 张明岐. 航空制造技术, 2020, 63(4), 14.
49 He X L, Ma G Q, Xiao Q. Laser & Infrared, 2022, 52(4), 476 (in Chinese).
何雪莉, 马国庆, 肖强. 激光与红外, 2022, 52(4), 476.
50 Li J, Zi J F, Yang X J, et al. Electromachining & Mould, 2018, 53(S1), 54 (in Chinese).
李杰, 訾进锋, 杨小君, 等. 电加工与模具, 2018, 53(S1), 54.
51 Wu B, Chen Y, Zhang Y P. Electromachining & Mould, 2022, 57(5), 41 (in Chinese).
吴博, 陈阳, 张云鹏. 电加工与模具, 2022, 57(5), 41.
52 Guo Y Z. Aeronautical Manufacturing Technology, 1991, 34(3), 20 (in Chinese).
郭应竹. 航空工艺技术, 1991, 34(3), 20.
53 Shi Y, Guo Z, Liu J, et al. Surface Technology, 2021, 50(9), 361 (in Chinese).
石岩, 郭志, 刘佳, 等. 表面技术, 2021, 50(9), 361.
54 Chen X, Liu X L, Zhang J G, et al. Failure Analysis and Prevention, 2023, 18(1), 29 (in Chinese).
陈星, 刘新灵, 张金刚, 等. 失效分析与预防, 2023, 18(1), 29.
55 Han S, Salvatore F, Rech J, et al. Precision Engineering and Nanotech-nology, 2020, 64, 20.
56 Wang Z Y, Du J J, Shi L, et al. Tool Engineering, 2019, 53(3), 51 (in Chinese).
王志勇, 杜金金, 师磊, 等. 工具技术, 2019, 53(3), 51.
57 Zhao Q, Li H, Ye C M, et al. Aviation Precision Manufacturing Technology, 2023, 59(3), 1 (in Chinese).
赵强, 李海, 叶才铭, 等. 航空精密制造技术, 2023, 59(3), 1.
58 Zhang F L. Research on machining technology and optimization of fuel nozzle micro-hole. Master's Thesis, Wuhan University of Technology, China, 2021 (in Chinese).
张服林. 燃油喷嘴微孔加工工艺及优化研究. 硕士学位论文, 武汉理工大学, 2021.
59 Shi H G, Wang F H, Ding Z C, et al. Aeronautical Manufacturing Technology, 2020, 63(13), 92 (in Chinese).
石洪国, 王福海, 丁志纯, 等. 航空制造技术, 2020, 63(13), 92.
60 Li X, Guan Y C. Aeronautical Manufacturing Technology, 2019, 62(Z2), 38 (in Chinese).
李兴, 管迎春. 航空制造技术, 2019, 62(Z2), 38.
61 Wu Y, Chen B Q, Liu W, et al. Aeronautical Materials, 2024, 44(1), 31 (in Chinese).
吴宇, 陈冰清, 刘伟, 等. 航空材料学报, 2024, 44(1), 31.
62 Li J Y, Liu W N, Li F Y, et al. Applied Mechanics and Materials, 2010, 44, 251.
63 Liu W N, Cai Z J, Li Y F, et al. China Mechanical Engineering, 2017, 28(1), 13 (in Chinese).
刘薇娜, 蔡智杰, 李云峰, 等. 中国机械工程, 2017, 28(1), 13.
64 Yang S G. Study on the abrasive flow polishing process of the center flow channel of the auxiliary of the engine fuel nozzle. Master's Thesis, Chang'an University, China, 2020 (in Chinese).
杨曙光. 发动机喷油嘴副喷口中心流道的磨粒流抛光工艺研究. 硕士学位论文, 长安大学, 2020.
65 Chen X, Liu J. Metal Working (Metal Cutting), 2014, 65(16), 30 (in Chinese).
陈曦, 刘军. 金属加工(冷加工), 2014, 65(16), 30.
66 Zhu X W, Che F, Fang B, et al. Hydraulics Pneumatics & Seals, 2020, 40(3), 80 (in Chinese).
朱西薇, 车飞, 方兵, 等. 液压气动与密封, 2020, 40(3), 80.
67 Tang Z Z, Sun Y L, Wang L F, et al. Aeronautical Manufacturing Technology, 2023, 66(Z2), 86 (in Chinese).
汤张喆, 孙玉利, 王利峰, 等. 航空制造技术, 2023, 66(Z2), 86.
68 Li R G, Ding Y T, Yang Z H, et al. Hydraulics Pneumatics & Seals, 2022, 42(7), 109 (in Chinese).
李瑞光, 丁宇亭, 杨增辉, 等. 液压气动与密封, 2022, 42(7), 109.
69 Wang J P, Song C, Ling Y, et al. Surface Technology, 2022, 51(4), 299 (in Chinese).
王景坡, 宋超, 凌洋, 等. 表面技术, 2022, 51(4), 299.
70 Guo J, Gui L, Hou W, et al. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(12), 3367 (in Chinese).
郭静, 桂林, 侯威, 等. 吉林大学学报(工学版), 2023, 53(12), 3367.
71 Chen J L, Chen J, Wang W R, et al. In:2005 China Mechanical Engineering Society Annual Meeting the 11th National Special Processing Academic Conference. Chongqing, 2005, pp. 544 (in Chinese).
陈济轮, 陈靖, 王伟荣, 等. 2005年中国机械工程学会年会第11届全国特种加工学术会议. 重庆, 2005, pp. 544.
72 Gao H, Li S C, Fu Y Z, et al. Acta Aeronautica et Astronautica Sinica, 2017, 38(10), 231 (in Chinese).
高航, 李世宠, 付有志, 等. 航空学报, 2017, 38(10), 231.
73 Cai Z J, Liu W N, Gao B B, et al. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11), 1722 (in Chinese).
蔡智杰, 刘薇娜, 高彬彬, 等. 机械科学与技术, 2017, 36(11), 1722.
74 Baehre D, Bruennet H, Swat M. Procedia CIRP, 2012, 1, 419.
75 Duval-Chaneac M S, Han S, Claudin C, et al. Precision Engineering, 2018, 54, 1.
[1] 李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
[2] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[3] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[4] 王智莹, 伞晓广, 苗昱露, 董磊. ZSM-22在烷烃加氢异构反应中应用的研究进展[J]. 材料导报, 2025, 39(24): 24120008-9.
[5] 朱涛, 伍文星, 阳彤, 陈平虎, 郭亮亮, 金旭明, 邹新长, 邱长军. 氧与Co/TiAl协同作用对激光增材IN718合金组织与力学性能的影响[J]. 材料导报, 2025, 39(20): 24090003-7.
[6] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[7] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[8] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[9] 刘世锋, 董日宇, 张朝晖, 魏瑛康, 王建勇, 张亮亮, 贾文鹏, 王岩. 能量输入对电子束选区熔化成形Fe-3.5%Si组织和磁性能的影响[J]. 材料导报, 2025, 39(17): 24040184-7.
[10] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[11] 马明, 郭鑫鑫, 魏正英. 基于深度学习的钛合金电弧增材制造表面形貌缺陷分类识别与预测[J]. 材料导报, 2025, 39(13): 24080130-7.
[12] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[13] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[14] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[3] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[4] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[6] REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells[J]. Materials Reports, 2017, 31(17): 133 -137 .
[7] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
[8] HOU Dianxin, LU Yuan, LIU Zhiwei, HU Jie. Temperature Rising in VO2 Thin Films Under Irradiation of Mid-infrared Laser Based on External Heat Source[J]. Materials Reports, 2017, 31(24): 91 -95 .
[9] NIU Ditao, LU Yao, LIU Xiguang. A Review on Sulfuration Properties of Concrete[J]. Materials Reports, 2017, 31(23): 163 -170 .
[10] ZHAO Xipo, LIU Chang, XU Min, PENG Shaoxian. Improving the Crystallization of Poly(lactic acid)(PLA) by Adding Inorganic Nucleating Agents: a Review of the Variety[J]. Materials Reports, 2018, 32(7): 1158 -1164 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed