Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120149-7    https://doi.org/10.11896/cldb.24120149
  无机非金属及其复合材料 |
纤维增韧TiB2/TiCN基梯度陶瓷刀具材料的制备及力学性能
周后明*, 赵士杰, 刘意琛
湘潭大学机械工程与力学学院,湖南 湘潭 411105
Preparation and Mechanical Properties of Fiber Toughened TiB2/TiCN Based Gradient Ceramic Cutting Tool Material
ZHOU Houming*, ZHAO Shijie, LIU Yichen
School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 26230KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空热压烧结方式制备了纤维增韧TiB2-TiCN梯度复合陶瓷刀具材料,并对Al2O3纤维含量及梯度结构层厚比进行了优化。层厚比为1的T3-1梯度复合陶瓷刀具材料维氏硬度为(20.57±0.22) GPa,抗弯强度为(938.47±15.3) MPa,断裂韧性为(9.37±0.23) MPa·m1/2,相比最佳Al2O3纤维含量的均质复合陶瓷刀具材料TBA7,维氏硬度、抗弯强度和断裂韧性分别增加了5%、10.84%和11.15%。梯度结构选用合适的层厚比在表层所产生的残余压应力和Al2O3纤维进一步细化了基体晶粒,表层穿晶断裂和中间层沿晶断裂的混合断裂方式提高了力学性能,纤维的拔出和产生的韧窝增强了材料的强度和韧性。梯度结构和纤维的共同增韧使材料的力学性能得到提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周后明
赵士杰
刘意琛
关键词:  陶瓷刀具材料  梯度结构  陶瓷纤维  力学性能    
Abstract: TiB2/TiCN composite ceramic tool material toughened by fiber was prepared by vacuum hot pressing sintering, and the Al2O3 fiber content and layer thickness ratio of gradient structure were optimized. The Vickers hardness, flexural strength and fracture toughness of T3-1 gradient composite ceramic tool material with layer thickness ratio of 1 were (20.57±0.22) GPa, (938.47±15.3) MPa, and (9.37±0.23) MPa·m1/2, respectively. Compared with the homogeneous composite ceramic tool material TBA7 with the best Al2O3 fiber content, the Vickers hardness, flexural strength and fracture toughness increased by 5%, 10.84% and 11.15%, respectively. The residual compressive stress and Al2O3 fiber produced in the surface layer of the gradient structure with appropriate layer thickness ratio further refined the matrix grain. The mixed fracture mode of transgranular fracture in the surface layer and intergranular fracture in the middle layer improved the mechanical properties, and the pull-out of the fiber and the dimples produced enhanced the strength and toughness of the material. The mechanical properties of the material were improved by the joint toughening of gradient structure and fiber.
Key words:  ceramic cutting tool material    gradient structure    ceramic fiber    mechanical property
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG711  
基金资助: 湖南省自然科学基金(2020JJ4585);湖南省教育厅基金(21A0117)
通讯作者:  *周后明,博士,湘潭大学机械工程学院教授、博士研究生导师。主要从事高速加工技术及其工具、刀具与刀具材料方面的研究。zhouhouming@xtu.edu.cn   
引用本文:    
周后明, 赵士杰, 刘意琛. 纤维增韧TiB2/TiCN基梯度陶瓷刀具材料的制备及力学性能[J]. 材料导报, 2025, 39(23): 24120149-7.
ZHOU Houming, ZHAO Shijie, LIU Yichen. Preparation and Mechanical Properties of Fiber Toughened TiB2/TiCN Based Gradient Ceramic Cutting Tool Material. Materials Reports, 2025, 39(23): 24120149-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120149  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120149
1 Mukhopadhyay A, Raju G B, Basu B, et al. Journal of the European Ceramic Society, 2009, 29(3), 505.
2 Zou B, Huang C, Song J, et al. International Journal of Refractory Metals and Hard Materials, 2012, 35, 1.
3 Vallauri D, Adrián I C A, Chrysanthou A. Journal of the European Ceramic Society, 2008, 28(8), 1697.
4 Shayesteh F, Delbari S A, Ahmadi Z, et al. Ceramics International, 2019, 45(5), 5306.
5 Zou B, Huang C, Ji W, et al. Ceramics International, 2014, 40(2), 3667.
6 Fang Y, Zhang M, Zhao X, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2019, 34(5), 1077.
7 Gu M, Huang C, Xiao S, et al. Materials Science and Engineering A, 2008, 486(1-2), 167.
8 Liu B, Wei W, Gan Y, et al. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105372.
9 Li X S. Shandong Chemical Industry, 2023, 52(16), 105(in Chinese).
李雪松. 山东化工, 2023, 52(16), 105.
10 Cao Z, Sun J, Zhang K, et al. Composites Part A, 2024, 185, 108318.
11 Naebe M, Shirvanimoghaddam K. Applied Materials Today, 2016, 5, 223.
12 Xing A, Jun Z, Chuanzhen H, et al. Materials Science and Engineering A, 1998, 248(1-2), 125.
13 Chen B, Xiao G, Yi M, et al. Ceramics International, 2021, 47(22), 32264.
14 Zhu J, Zhou H, Qin B, et al. Ceramics International, 2020, 46(5), 6497.
15 Hannink R H J, Swain M V. Annual Review of Materials Science, 1994, 24(1), 359.
16 Anstis G R, Chantikul P, Lawn B R, et al. Journal of the American Ceramic Society, 1981, 64(9), 533.
17 Cai P Z, Green D J, Messing G L. Journal of the European Ceramic Society, 1998, 18(14), 2025.
18 Tampieri A, Bellosi A. Journal of Materials Science, 1993, 28, 649.
19 Li W, Xu Z, Abudurexiti P, et al. Ceramics International, DOI:10. 1016/j. ceramint. 2024. 05. 244.
20 Baik S, Becher P F. Journal of the American Ceramic Society, 1987, 70(8), 527.
21 Mahday A A, El-Eskandarany M S, Ahmed H A, et al. Journal of Alloys and Compounds, 2000, 299(1-2), 244.
22 Eriksson M, Radwan M, Shen Z. International Journal of Refractory Metals and Hard Materials, 2013, 36, 31.
23 Tamura Y, Moshtaghioun B M, Gomez-Garcia D, et al. Ceramics International, 2017, 43(1), 658.
24 Du C, Huang C, Li S, et al. Advanced Engineering Materials, 2023, 25(20), 2300564.
25 Tian X, Zhao J, Wang Y, et al. Ceramics International, 2015, 41(3), 3381.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed