Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120034-10    https://doi.org/10.11896/cldb.24120034
  无机非金属及其复合材料 |
粉煤灰基X型沸石的合成及在CO2捕集分离中的应用
李珂嘉1, 殷志刚2, 王彬彬3, 李瑶1,*
1 河南理工大学安全科学与工程学院,河南 焦作 454003
2 荣盛盟固利新能源科技股份有限公司,北京 100000
3 河南理工大学材料科学与工程学院,河南 焦作 454003
Synthesis of Coal Fly Ash-based Zeolite X and Its Application for CO2 Capture and Separation
LI Kejia1, YIN Zhigang2, WANG Binbin3, LI Yao1,*
1 College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 Rongsheng Alliance Guli New Energy Technology Co., Ltd., Beijing 100000, China
3 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
下载:  全 文 ( PDF ) ( 17300KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为减缓全球CO2排放量的增长趋势,提升低质天然气的利用率,同时减少粉煤灰(CFA)对环境造成的负面影响,提出利用粉煤灰为原材料合成沸石,以该粉煤灰基沸石作为吸附剂捕集并分离CO2气体。采用碱熔融辅助水热法制备了粉煤灰基X型沸石,结果表明,X型沸石的种类和纯度受合成条件和参数的影响较大,其中,A型沸石为主要竞争相。本工作在90 ℃、12 h的水热条件下成功合成了八面体X型沸石(SXZ),其比表面积为589 m2/g,结晶度达到87.11%,具有良好的热稳定性,对CO2的吸附量可达到商用X型沸石(CXZ)的97%,对CO2/N2和CO2/CH4的气体分离选择性均高于商用X型沸石。本研究为环境治理、能源利用和固体废物的高附加值利用提供了有效方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李珂嘉
殷志刚
王彬彬
李瑶
关键词:  粉煤灰  X型沸石  CO2吸附  气体分离    
Abstract: To slow down the increasing trend of global CO2 emissions, improve the utilization of low-quality natural gas, and reduce the negative impact of coal fly ash (CFA) on the environment, this work proposed to use fly ash as raw material to synthesize zeolite, and use the CFA-based zeolite as an adsorbent for CO2 capture and separation. Zeolite X was prepared by alkali-melting assisted hydrothermal method. The results show that the type and purity of zeolite X were greatly affected by the synthesis conditions and parameters, among which zeolite A is the main competitive phase. This work successfully synthesized octahedral zeolite X (SXZ) under the hydrothermal condition of 90 ℃ and 12 h, which showed specific surface area of 589 m2/g, crystallinity of 87.11%, and good thermal stability. The adsorption capacity of as-synthesized zeolite X on CO2 can reach 97% of that of commercial zeolite X (CXZ) and the gas separation selectivity of CO2/N2 and CO2/CH4 is higher than that of commercial X zeolites. This study provides an effective solution for environmental governance, energy utilization and high value-added utilization of solid waste.
Key words:  coal fly ash    zeolite X    CO2 adsorption    gas separation
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TE991  
基金资助: 国家自然科学基金青年基金(42002164);安全学科“双一流”建设学科培育项目
通讯作者:  *李瑶,博士,河南理工大学副教授、硕士研究生导师。主要从事多孔吸附剂的设计、合成及煤层气的吸附分离研究。leayao35@hpu.edu.cn   
作者简介:  李珂嘉,河南理工大学安全科学与工程学院硕士研究生,主要研究方向为粉煤灰基沸石合成及CO2/CH4吸附分离。
引用本文:    
李珂嘉, 殷志刚, 王彬彬, 李瑶. 粉煤灰基X型沸石的合成及在CO2捕集分离中的应用[J]. 材料导报, 2025, 39(24): 24120034-10.
LI Kejia, YIN Zhigang, WANG Binbin, LI Yao. Synthesis of Coal Fly Ash-based Zeolite X and Its Application for CO2 Capture and Separation. Materials Reports, 2025, 39(24): 24120034-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120034  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120034
1 Zhao J, Zhang W J, Shen D K, et al. Journal of the Energy Institute, 2023, 107, 101179.
2 Yuan B, Wu X F, Chen Y X, et al. Environmental Science & Technology, 2013, 47(10), 5474.
3 Rufford T E, Smart S, Watson G C Y, et al. Journal of Petroleum Science and Engineering, 2012, 94, 123.
4 Rashidi N A, Yusup S. Journal of CO2 Utilization, 2016, 13, 1.
5 Kishor R, Ghoshal A K. Industrial & Engineering Chemistry Research, 2017, 56(20), 6078.
6 Liu Z W, Zhang K, Wu Y, et al. Applied Surface Science, 2018, 440, 351.
7 de Aquino T F, Estevam S T, Viola V O, et al. Fuel, 2020, 276, 118143.
8 Zhang L, Huang Y N. Journal of Porous Materials, 2015, 22, 843.
9 Kokotailo G T, Lawton S L, Olson D H, et al. Nature, 1978, 272(5652), 437.
10 Wang C, Liu J Q, Yang J F, et al. Microporous and Mesoporous Materials, 2017, 242, 231.
11 Kim K J, Ahn H G. Microporous and Mesoporous Materials, 2012, 152, 78.
12 Yoldi M, Fuentes-Ordoñez E G, Korili S A, et al. Microporous and Mesoporous Materials, 2019, 287, 183.
13 Mohamed R M, Mkhalid I A, Barakat M A. Arabian Journal of Chemistry, 2015, 8(1), 48.
14 Melo C R, Riella H G, Kuhnen N C, et al. Materials Science and Engineering B:Advanced Functional Solid-State Materials, 2012, 177(4), 345.
15 Ren X Y, Xiao L F, Qu R Y, et al. RSC Advances, 2018, 8(73), 42200.
16 Verrecchia G, Cafiero L, de Caprariis B, et al. Fuel, 2020, 276, 118041.
17 Sivalingam S, Sen S. Applied Surface Science, 2018, 455, 903.
18 Ozdemir O D, Piskin S. Waste and Biomass Valorization, 2019, 10, 143.
19 Zhao S Y. Coal Science and Technology, 2008(4), 106 (in Chinese).
赵世永. 煤炭科学技术, 2008(4), 106.
20 Qiu S F, Wang Y, Cai M, et al. Environmental Protection of Chemical Industry, 2015, 35(6), 583 (in Chinese).
邱素芬, 王源, 蔡觅, 等. 化工环保, 2015, 35(6), 583.
21 Liu Y, Lyu H L, Zhang Z Y, et al. Journal of China Coal Society, 2009, 34(7), 966 (in Chinese).
刘艳, 吕海亮, 张振宇 等. 煤炭学报, 2009, 34(7), 966.
22 Guo H, Yang X H, Sheng W B, et al. Modern Chemical Research, 2020(15), 36 (in Chinese).
郭红, 杨先海, 盛文斌, 等. 当代化工研究, 2020(15), 36.
23 Bortolatto L B, Boca Santa R A A, Moreira J C, et al. Microporous and Mesoporous Materials, 2017, 248, 214.
24 GB/T 176-2017, Methods for chemical analysis of cement, Standards Press of China, China, 2017 (in Chinese).
GB/T 176-2017, 水泥化学分析方法, 中国标准出版社, 2017.
25 Algieri C, Bernardo P, Barbieri G, et al. Microporous and Mesoporous Materials, 2009, 119(1-3), 129.
26 Reinoso D, Adrover M, Pedernera M. Ultrasonics Sonochemistry, 2018, 42, 303.
27 Sendesi S M T, Towfighi J, Keyvanloo K. Catalysis Communications, 2012, 27, 114.
28 Fan M H. Synthesis, ion exchange and adsorption performance of X zeolites with low Si/Al ratio. Master’s Thesis, Beijing University of Technology, China, 2014 (in Chinese).
范明辉. 低硅铝比 X 型分子筛的合成、离子交换及吸附性能研究. 硕士学位论文, 北京工业大学, 2014.
29 Barth-Wirsching U, Höller H. European Journal of Mineralogy, 1989, 1(4), 489.
30 Somerset V S, Petrik L F, White R A, et al. Fuel, 2005, 84(18), 2324.
31 Murali R S, Ismail A F, Rahman M A, et al. Separation and Purification Technology, 2014, 129, 1.
32 Tang W F, Han J P, Zhang S, et al. Polymer Composite, 2018, 39(10), 3461.
33 Beltrao-Nunes A P, Sennour R, Arus V A, et al. Journal of Alloys and Compounds, 2019, 778, 866.
34 Martin-Calvo A, Parra J B, Ania C O, et al. The Journal of Physical Chemistry C, 2014, 118(44), 25460.
35 Zhang P X, Wang J, Fan W, et al. Chemical Engineering Journal, 2019, 375, 121931.
36 Wang J, Krishna R, Yang J F, et al. Environmental Science & Technology, 2015, 49(15), 9364.
37 Zhang Y, Liu L, Zhang P X, et al. Chemical Engineering Journal, 2019, 355, 309.
38 Li Y, Wang Y G, Liu N, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 658, 130732.
39 Li Y, Liu N, Zhang T, et al. Energy, 2020, 211, 118561.
40 Li Y, Wang X, Cao M H. Journal of CO2 Utilization, 2018, 27, 204.
41 Li Y, Chen B Q, Gao Y R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 677, 132350.
42 Li Y, Wang Y G, Chen B Q, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108847.
43 Li Y, Xu R, Wang B B, et al. Nanomaterials, 2019, 9(2), 266.
44 Li Y, Wang S Y, Wang B B, et al. Nanomaterials, 2020, 10(1), 174.
45 Li Y, Xu R, Wang X, et al. RSC Advances, 2018, 8(35), 19818.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 朱元浪, 张恒武, 吕凯越, 杨鄯旭, 张式玉, 王史以诺, 谢柏军, 高嵩. 基于逾渗理论的实海环境再生混凝土抗Cl-渗透特性研究[J]. 材料导报, 2025, 39(23): 24100208-8.
[3] 杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
[4] 朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
[5] 李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
[6] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[7] 涂义亮, 任思雨, 赵林, 凌玲, 柴贺军. 玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究[J]. 材料导报, 2025, 39(16): 24050216-8.
[8] 兰亚坤, 李丹, 丁立洋, 董庭轩, 李依鹏, 郭生伟. 粉煤灰基防鼠咬PVC线缆护套材料的制备与性能研究[J]. 材料导报, 2025, 39(12): 24060115-6.
[9] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[10] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[11] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[12] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[13] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[14] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[15] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed