Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24090184-7    https://doi.org/10.11896/cldb.24090184
  金属与金属基复合材料 |
蜂窝基体材料的尺寸效应及其对数值预测精度的影响
黄蓉1,2,3, 牟让科1,2,3,*, 白春玉1,2,3, 惠旭龙1,2,3, 张欣玥1,2,3, 刘小川1,2,3
1 强度与结构完整性全国重点实验室,西安 710065
2 中国飞机强度研究所结构冲击动力学航空科技重点实验室,西安 710065
3 陕西省飞行器振动冲击与噪声重点实验室,西安 710065
Size Effects of Honeycomb Matrix Materials and Their Impact on Numerical Prediction Accuracy
HUANG Rong1,2,3, MU Rangke1,2,3,*, BAI Chunyu1,2,3, XI Xulong1,2,3, ZHANG Xinyue1,2,3, LIU Xiaochuan1,2,3
1 National Key Laboratory of Strength and Structural Integrity, Xi’an 710065, China
2 Key Laboratory of Aviation Science and Technology on Structures Impact Dynamics, Aircraft Strength Research Institute of China, Xi’an 710065, China
3 Shaanxi Province Key Laboratory of Aircraft Vibration, Impact and Noise, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 25113KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基体材料的尺寸效应对蜂窝结构的动态力学行为和数值预测精度具有显著影响。为了研究蜂窝基体材料的尺寸效应规律,本研究以常见的航空铝蜂窝为对象,采用相同工艺制备不同厚度的铝蜂窝基体材料,并测试其动态力学性能。根据实验结果,对基体材料的Johnson-Cook(J-C)本构模型参数进行标定,并在LS-Dyna中利用不同厚度基体材料的本构模型参数进行蜂窝结构的动态压缩仿真分析,研究基体材料尺寸效应引起的本构参数差异对蜂窝结构压缩性能仿真预测精度的影响。研究结果表明,蜂窝基体材料厚度的减小对材料的强度和失效模式均有显著影响。随着试样厚度的减小,基体材料的失效应变减小而强度增加,失效模式由剪切断裂转变为水平断裂。此外,应变率对基体材料的失效模式也有显著影响,随着应变率的增加,基体材料的失效应变逐渐增大。考虑蜂窝基体材料尺寸效应引起的本构模型参数变化后,可显著提高蜂窝压缩性能的数值预测精度。相比于0.5 mm的薄板材料,采用0.04 mm铝箔的动态本构参数后,蜂窝压缩性能的数值预测误差从31.44%降低到3.78%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄蓉
牟让科
白春玉
惠旭龙
张欣玥
刘小川
关键词:  冲击动力学  蜂窝铝  动态力学性能  本构表征  尺寸效应  数值仿真    
Abstract: To investigate the influence of size effects on the mechanical properties of honeycomb matrix materials, aluminum honeycomb matrix materials of varying thicknesses were prepared and subjected to dynamic mechanical testing. Based on the test results, the Johnson-Cook (J-C) principal model parameters of the matrix material were calibrated. Subsequently, dynamic compression simulations of the honeycomb structure were conducted using LS-Dyna to examine how variations in the principal parameters, induced by the size effect of the matrix material, impact the accuracy of compression performance predictions for the honeycomb structure. The results indicate that as the specimen thickness decreases, the failure strain of the matrix material decreases while its strength increases, and the failure mode transitions from shear fracture to horizontal fracture. Additionally, the failure strain of the matrix material increases with higher strain rates. By accounting for the variation in constitutive model parameters due to the size effect of the honeycomb matrix material, the numerical prediction error for the compression performance of the honeycomb structure was significantly reduced from 31.44% to 3.78%.
Key words:  shock dynamic    aluminum honeycomb    dynamic mechanical property    intrinsic characterization    size effect    numerical simulation
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  O341  
基金资助: 民机专项科研项目
通讯作者:  *牟让科,中国飞机强度研究所研究员、博士研究生导师。目前主要从事飞机结构动强度等方面的研究。rangkemu@163.com   
作者简介:  黄蓉,中国飞机强度研究所助理工程师,目前主要研究领域为材料/结构动力学。
引用本文:    
黄蓉, 牟让科, 白春玉, 惠旭龙, 张欣玥, 刘小川. 蜂窝基体材料的尺寸效应及其对数值预测精度的影响[J]. 材料导报, 2025, 39(24): 24090184-7.
HUANG Rong, MU Rangke, BAI Chunyu, XI Xulong, ZHANG Xinyue, LIU Xiaochuan. Size Effects of Honeycomb Matrix Materials and Their Impact on Numerical Prediction Accuracy. Materials Reports, 2025, 39(24): 24090184-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090184  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24090184
1 Zhang J, Lu G, You Z. Composites Part B:Engineering, 2020, 201(G4), 108340.
2 Gibson L J, Ashby M F. Cellular solids:structure and properties, 2nd ed, Cambridge University Press, 1997, pp. 81.
3 Chang Q, Feng J, Shu Y. Composites Part B:Engineering, 2021,227, 109393.
4 Liu K P, Miao W P, Wang Y J, et al. Journal of Vibration and Shock, 2024, 43(10), 215 (in Chinese).
刘坤鹏, 缪维跑, 王瑀琎, 等. 振动与冲击, 2024, 43(10), 215.
5 Shi W H, Yue S, Liu Z, et al. Journal of Vibration and Shock, 2024, 43(5), 292 (in Chinese).
史文辉, 岳帅, 刘洲, 等. 振动与冲击, 2024, 43(5), 292.
6 Yan S L, Wu J W, Xiong Y, et al. Journal of Vibration and Shock, 2022, 41(19), 248 (in Chinese).
燕山林, 吴锦武, 熊引, 等. 振动与冲击, 2022, 41(19), 248.
7 Wen Y Z, Deng Y H, Jia Z. China Mechanical Engineering, 2023, 34(5), 556 (in Chinese).
文彦臻, 邓云华, 贾震. 中国机械工程, 2023, 34(5), 556.
8 Wu E, Jiang W S. International Journal of Impact Engineering, 1997, 19(5-6), 439.
9 Chen Q, Lan F C, Chen J Q. Machinery Design and Manufacture, 2017(1), 186 (in Chinese).
陈琪, 兰凤崇, 陈吉清. 机械设计与制造, 2017(1), 186.
10 Wang C, Liu R Q, Deng Z Q, et al. Journal of Vibration and Shock, 2008(11), 56 (in Chinese).
王闯, 刘荣强, 邓宗全, 等. 振动与冲击, 2008(11), 56.
11 Kim B J, Lee D G. Composite Structure, 2010, 92(2), 460.
12 Ruan D, Lu G, Wang B, et al. International Journal of Impact Engineering, 2003, 28(2),161.
13 Yamashita M, Gotoh M. International Journal of Impact Engineering, 2005, 32(1-4), 618.
14 Zhang J J, Lu G X, You, Z. Composites Part B:Engineering, 2020, 201, 108340.
15 Dong Z, Li Y, Zhao T, et al. Materials and Design, 2019, 182, 108036.
16 Lai Y H, Jiang W G, Zou H, et al. Chinese Journal of Applied Mechanics, 2018, 151(3), 197 (in Chinese).
赖燕辉, 江五贵, 邹航, 等. 应用力学学报, 2018, 151(3), 197.
17 Sun D Q, Zhang Z J. Journal of Shaanxi University of Science & Technology, 2018, 36(2), 137 (in Chinese).
孙德强, 张志娟. 陕西科技大学学报, 2018, 36(2), 137.
18 Tan Sibo, Hou Bing, Li Yulong, et al. Explosion and Shock Waves, 2015, 35(1), 16 (in Chinese).
谭思博, 侯兵, 李玉龙, 等. 爆炸与冲击, 2015, 35(1), 16.
[1] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[5] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[6] 林忠亮, 张振峰, 许学石, 李浩楠, 唐伟, 白清顺. 螺纹短收尾表面折叠形成机理及滚压工艺参数仿真[J]. 材料导报, 2024, 38(22): 23110280-7.
[7] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[8] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[9] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[10] 王雷, 王文恒, 廖明义. 二元嵌段丁苯橡胶的合成及动态力学性能的研究[J]. 材料导报, 2023, 37(14): 21120152-5.
[11] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[12] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[13] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[14] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[15] 杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势[J]. 材料导报, 2021, 35(15): 15189-15196.
[1] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed