Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090004-7    https://doi.org/10.11896/cldb.24090004
  无机非金属及其复合材料 |
基于核磁共振的碱激发材料硫酸盐环境下孔隙结构特征演变分析
宋毅1, 张戎令1,2,*, 史银亮1, 杨一帆1, 刘益麟1
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
NMR-based Analysis on Pore Structure Characteristics Evolution of Alkali-activated Materials Subjected to Sulfate Environments
SONG Yi1, ZHANG Rongling1,2,*, SHI Yinliang1, YANG Yifan1, LIU Yilin1
1 School of Civil Engineering, LanzhouJiaotong University, Lanzhou 730070, China
2 Bridge Engineering National Local Joint Engineering Laboratory of Disaster Prevention and Control Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 17144KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对大宗工业固废再利用及西北强腐蚀盐渍土地区混凝土结构损伤劣化等问题,本工作以矿渣粉和粉煤灰为前驱体,以NaOH和钠水玻璃为碱激发剂,探究了不同矿灰比的碱激发材料在干湿循环-硫酸盐侵蚀耦合作用下的宏细观性能发展与微观孔隙结构时变规律。基于低场核磁共振T2谱和分形理论对碱激发材料内部不同孔径区域的孔隙分形维数进行计算,分析研究硫酸钠盐侵蚀环境中碱激发材料随干湿循环龄期的微观孔隙分布变化过程。研究结果表明:所设计的碱激发材料的28 d强度均大于42.0 MPa,且随干湿循环-硫酸盐侵蚀龄期的延长均先增后减;材料经干湿循环45 d时强度最高,矿灰比为8∶2的材料强度最大,为54.8 MPa;经干湿循环90 d后,不同矿灰比的碱激发材料的抗蚀剩余强度比均大于0.95;三组碱激发材料的孔隙结构具有明显的分形特征,分形维数在凝胶孔、过渡孔、毛细孔和大孔区域依次增加,且各级孔径数量占比排序为过渡孔>毛细孔>凝胶孔>大孔;在硫酸盐侵蚀环境中,随着干湿循环龄期延长,过渡孔数量减少,毛细孔数量增多。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋毅
张戎令
史银亮
杨一帆
刘益麟
关键词:  碱激发材料  核磁共振  孔隙结构特征  硫酸盐侵蚀  干湿循环  分形维数    
Abstract: In view of the reuse of large industrial solid waste and the damage and deterioration of concrete structure in the strong corrosive saline soil area ofNorthwest China, this paper took slag powder and fly ash as precursors, NaOH and sodium silicate as alkali activators to explore the macro-meso performance development and micro-pore structure of alkali-activated cementitious materials with different slag-cement ratios under the coupling effect of repetitive dry-wet alternations-sulfate erosion. Time-varying law based on low-field nuclear magnetic resonance T2 spectrum and fractal theory, and the pore fractal dimension of different pore size regions in the internal pores of alkali-activated cementitious materials were calculated. The change process of microscopic pore distribution of alkali-activated materials with the age of repetitive dry-wet alternations under the erosion environment of sodium sulfate was analyzed and studied. The results showed that the 28 d strengths of all the alkali-activated mate-rials designed in this paper were greater than 42.0 MPa, and exhibited a biphasic (increase → decrease) variation with the progress of repetitive dry-wet alternations-sulfate erosion. The strengths reached their maximum values when the repetitive dry-wet alternations lasted 45 d, and the highest strength (58.4 MPa) was achieved by the material with an ore-cement ratio of 8∶2. After 90 days of repetitive dry-wet alternations, the residual strength ratios of alkali-activated cementitious materials with different mineral ash ratios were greater than 0.95. The pore structures of the three groups of alkali-activated cementitious materials exhibited clear fractal characteristics. The fractal dimensions increased in the order of gel pores, transition pores, capillary pores, and macropores. With the aging of the materials under dry-wet alternations in sulfate erosion, the number of transition pores decreased while the number of capillary pores increased.
Key words:  alkali-activated cementitious material    nuclear magnetic resonance    pore structure characterization    sulfate erosion    repetitive dry-wet alternation    fractal dimension
发布日期:  2025-10-27
ZTFLH:  TU525  
基金资助: 国家自然科学基金-铁路基础研究联合基金(U2368209);国家自然科学基金(52068042);中铁二十一局集团公司科研计划(20C-1)
通讯作者:  *张戎令,博士,兰州交通大学教授,主要从事西北干寒地区材料耐久性与结构全寿命研究。mogzrlggg@163.com   
作者简介:  宋毅,兰州交通大学土木工程学院硕士研究生,在张戎令教授的指导下开展碱激发地质聚合物材料设计与腐蚀耐久性能研究。
引用本文:    
宋毅, 张戎令, 史银亮, 杨一帆, 刘益麟. 基于核磁共振的碱激发材料硫酸盐环境下孔隙结构特征演变分析[J]. 材料导报, 2025, 39(20): 24090004-7.
SONG Yi, ZHANG Rongling, SHI Yinliang, YANG Yifan, LIU Yilin. NMR-based Analysis on Pore Structure Characteristics Evolution of Alkali-activated Materials Subjected to Sulfate Environments. Materials Reports, 2025, 39(20): 24090004-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090004  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090004
1 Schneider M, Romer M, Tschudin M, et al. Cement and Concrete Research, 2011, 41(7), 642.
2 De Grazia M T, Sanchez L F M, Yahia A. Journal of Cleaner Production, 2023, 389, 135752.
3 Cao Z, Shen L, Zhao J A, et al. Journal of Cleaner Production, 2016, 139, 527.
4 Azevedo A, Vieira C, Ferreira W, et al. Journal of Building Engineering, 2020, 29, 101156.
5 Afonso R G, Markssuel T M, Higor A R. Applied Ceramic Technology, 2020, 17(6), 2649.
6 Ling Y F, Wang K J, Wang X H, et al. Construction and Building Materials, 2019, 228, 116763.
7 Jiao Z Z, Li X Y, Yu Q L. Construction and Building Materials, 2021, 313, 125507.
8 Kirubajiny P, Marita B, Jay S, et al. Journal of Materials in Civil Engineering, 2018, 30(3), 04018007.
9 Provis J L. Cement and Concrete Research, 2018, 114, 40.
10 Luukkonen T, Abdollahnejad Z, Yliniemi J, et al. Cement and Concrete Research, 2018, 103, 21.
11 Li L M, Xie J H, Zhang B F, et al. Construction and Building Materials, 2023, 368, 130389.
12 Chindaprasirt P, Sriopas B, Phosri P, et al. Journal of Building Engineering, 2022, 45, 103590.
13 Özcan A, Karakoç M B. Structural Concrete, 2019, 20(5), 1607.
14 Parthiban K, Saravana Raja Mohan K. Construction and Building Materials, 2017, 133, 65.
15 Xie J H, Zhao J B, Wang J J, et al. Materials, 2019, 12(8), 1247.
16 Fan J Y, Jiang Y, Wang L M, et al. Silicate Bulletin, 2020, 39(5), 1430 (in Chinese).
樊晋源, 姜屹, 王利民, 等. 硅酸盐通报, 2020, 39(5), 1430.
17 Karakoç M B, Türkmen, Maraş M M, et al. Ceramics International, 2016, 42, 1254.
18 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2003, 33(10), 1607.
19 Pasupathy K, Berndt M, Sanjayan J, et al. Cement and Concrete Research, 2017, 100, 297.
20 Guo L, Wu Y Y, Xu F, et al. Composites Part B, 2020, 183, 107689.
21 Kwasny J, Aiken T A, Soutsos M N, et al. Construction and Building Materials, 2018, 166, 537.
22 Xie E H, Zhou C S. Journal of Silicates, 2020, 48(11), 1808 (in Chinese).
谢恩慧, 周春圣. 硅酸盐学报, 2020, 48(11), 1808.
23 Liang M H, Zhang X Y, Guo X Z, et al. Journal of Silicates, 2024(11), 3546 (in Chinese).
梁华明, 张笑与, 郭鑫志, 等. 硅酸盐学报, 2024(11), 3546.
24 Shen Y J, Wang Y Z, Wei X, et al. Construction and Building Materials, 2020, 252, 118962.
25 Shen A Q. Cement and concrete, People’s Transportation Press, China, 2019 (in Chinese).
申爱琴. 水泥与水泥混凝土, 人民交通出版社, 2019.
26 Xue C Z, Shen A Q, Guo Y C. Materials Herald, 2019, 33(8), 1348 (in Chinese).
薛翠真, 申爱琴, 郭寅川. 材料导报, 2019, 33(8), 1348.
27 Huang G S, Su L, Xue C Z, et al. Journal of Composite Materials, 2025(2), 1034 (in Chinese).
黄观送, 苏丽, 薛翠真, 等. 复合材料学报, 2025(2), 1034.
28 Luo X. Effect of low-temperature action of air-entraining agent and its temperature sensitivity mechanism. Master’s Thesis, China General Research Institute of Building Materials, China, 2023 (in Chinese).
罗祥. 引气剂低温作用效果及其温度敏感性机理. 硕士学位论文, 中国建筑材料科学研究总院, 2023.
29 Wu A L, Liu K, Hao Y H, et al. Journal of Building Materials, 2024(8), 701 (in Chinese).
吴安利, 刘坤, 郝贠洪, 等. 建筑材料学报, 2024(8), 701.
30 Zhao K, Ma C, Yang J, et al. Powder Technology, 2023, 426, 118678.
31 Zhang J X, Jin S S. Cement concrete microscopic pore structure and its role, China Science and Technology Press, China, 2014 (in Chinese).
张金喜, 金珊珊. 水泥混凝土微观孔隙结构及其作用, 中国科技出版社, 2014.
32 Ge X N, Hu X, Shi C J. Cement and Concrete Composites, 2024, 152, 105637.
33 Ge X N, Liu Y W, Mao Y G, et al. Construction and Building Materials, 2023, 382, 131222.
34 Zhang C S, Wang X, Hu Z C, et al. Journal of Building Engineering, 2021, 36, 102091.
35 Sun Z Q, Vollpracht A. Cement and Concrete Composites, 2019, 95, 98.
[1] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[2] 王张翔, 金浪, 陈培鑫, 陈飞翔, 姚天豫, 陈徐东. 基于CT和NMR技术的UHPC孔隙结构研究[J]. 材料导报, 2025, 39(5): 24020073-6.
[3] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[4] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[5] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[6] 张爱, 袁浩然, 葛勇. 碱激发硅藻土/铝矾土胶凝材料的制备与性能研究[J]. 材料导报, 2025, 39(20): 24100122-6.
[7] 文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
[8] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[9] 程立年, 刘娟红, 周大卫, 郭凌志, 陈德平. 混凝土孔隙结构特征对超低温力学性能影响研究[J]. 材料导报, 2025, 39(13): 24060113-7.
[10] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[11] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[12] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[13] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[14] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹混凝土的抗硫酸盐侵蚀和抗冻性能[J]. 材料导报, 2024, 38(22): 22100093-7.
[15] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed