Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24080239-7    https://doi.org/10.11896/cldb.24080239
  无机非金属及其复合材料 |
微波预活化对沥青硫化反应的促进作用和工程性质影响研究
王黎明*, 庞宏, 孙永卓, 董明泽, 徐永丽
东北林业大学土木与交通学院,哈尔滨 150040
The Effect of Microwave Pre-activation on the Promotion of Asphalt Vulcanization Reaction and Engineering Properties
WANG Liming*, PANG Hong, SUN Yongzhuo, DONG Mingze, XU Yongli
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 15300KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波加热可以使沥青低温裂化而化学活性增强,理论上有利于硫化交联反应的发生,进而通过改变游离硫与交联硫的比例影响硫改性沥青的工程性质。为分析微波加热预活化对沥青硫化反应和工程性质的影响,开展了微波活化-硫化和直接硫化两种沥青的对比性试验。在硫化反应方面,通过改进亚硫酸钠氧化-碘滴定法和高温燃烧法分别测定了游离硫和总硫含量,并且通过体视显微镜观察了表面结晶析出状态,发现微波活化-硫化沥青的反应活化能相对降低24%,硫化反应的速度提高,同时有更多游离硫向交联硫转化。在工程性质方面,通过温度扫描、多应力重复蠕变恢复(MSCR)、线性振幅扫描(LAS)、弯曲梁流变(BBR)等沥青流变学试验和旋转薄膜烘箱(RTFO)老化试验,发现微波活化-硫化沥青的模量相对提高且弹性增强,高温时抗车辙能力提高明显,中温时疲劳寿命提高4~6倍,抗低温开裂能力略有改善,耐热氧老化性提高。微波预活化措施使得更多游离硫向交联硫转化,通过强化交联和弱化游离硫的不利影响使沥青胶体结构变得更稳定,是微波活化-硫化沥青工程性质相对改善的根本原因。这种措施高效可行,对其他改性方式也具有潜在效益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王黎明
庞宏
孙永卓
董明泽
徐永丽
关键词:  道路工程  沥青  微波活化  硫化  交联反应  工程性质    
Abstract: Microwave heating can make asphalt cracking at low temperature and enhance chemical activity, which is theoretically conducive to the occurrence of sulfur cross-linking reaction, and then affect the engineering properties of sulfur-modified asphalt by changing the ratio of free sulfur to cross-linked sulfur. In order to analyze the effect of microwave heating pre-activation on the sulfidation reaction and engineering properties of asphalt, a comparative test was carried out to two kinds of asphalt, microwave activation-sulfidation and direct sulfidation. In terms of sulfidation reaction, the free sulfur and total sulfur content were measured by the improved sodium sulfite oxidation-iodine titration and high temperature combustion method, respectively, and the state of surface crystallization precipitation was observed by body-view microscope. It was found that the activation energy of microwave activated-sulfided asphalt reaction was relatively reduced by 24%, and the speed of the sulfidation reaction was increased, meanwhile, there were more free sulfur was converted into cross-linked sulfur. In terms of engineering properties, through a series of asphalt rheology tests such as temperature scanning, MSCR, LAS, BBR and aging tests RTFO, it was found that modulus of microwave activation-sulfurized asphalt was relatively improved and elasticity was enhanced, rutting resistance at high temperatures improved significantly, fatigue life increased by 4—6 times at medium temperatures, low-temperature cracking resistance improved slightly, and heat and oxygen aging resistance improved. The microwave pre-activation allows more free sulfur to be converted to crosslinked sulfur, which makes the asphalt colloid structure more stable by strengthening the crosslinks and weakening the adverse effects of free sulfur, and this is the fundamental reason for the relative improvement in the engineering properties of microwave activated-sulfurized asphalt. This microwave pre-activation is not only efficient and feasible to asphalt, but also has potential benefits for other modification methods.
Key words:  road engineering    asphalt    microwave activation    vulcanization    crosslinking reaction    engineering property
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  U414  
基金资助: 国家自然科学基金面上项目(52278449);黑龙江省交通运输科技项目(HJK2023B014-3)
通讯作者:  * 王黎明,博士,东北林业大学土木与交通学院副教授、博士研究生导师。目前主要从事路面材料与结构、功能性路面等方面的研究工作。wangliming@nefu.edu.cn   
引用本文:    
王黎明, 庞宏, 孙永卓, 董明泽, 徐永丽. 微波预活化对沥青硫化反应的促进作用和工程性质影响研究[J]. 材料导报, 2025, 39(14): 24080239-7.
WANG Liming, PANG Hong, SUN Yongzhuo, DONG Mingze, XU Yongli. The Effect of Microwave Pre-activation on the Promotion of Asphalt Vulcanization Reaction and Engineering Properties. Materials Reports, 2025, 39(14): 24080239-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080239  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24080239
1 Zeng Z W, Zheng C, Mao T Y, et al. CIESC Journal, 2019, 70(S1), 1 (in Chinese).
曾昭文, 郑成, 毛桃嫣, 等. 化工学报, 2019, 70(S1), 1.
2 Bosisio R G, Cambon J L, Chavarie C, et al. The Journal of Microwave Power, 1977, 12, 301.
3 Karami S, Dehaghani A S, Haghighi M, et al. Geoenergy Science and Engineering, 2024, 233, 212481.
4 Jiang H Y. Study on the action of microwave on high viscosity and high condensation crude oil. Master's Thesis, Southwest Petroleum Institute, China, 2004 (in Chinese).
蒋华义. 微波对高粘高凝原油作用规律研究. 硕士学位论文, 西南石油学院, 2004.
5 Wang L M. Materials Research Express, 2024, 11(3), 035302.
6 Wang L M, Sun Y Z, Pang H, et al. Materials Reports, 38(24), 280 (in Chinese).
王黎明, 孙永卓, 庞宏, 等. 材料导报, 38(24), 280.
7 Sakib N, Bhasin A, Islam M K, et al. International Journal of Pavement Engineering, 2019, 22(3), 392.
8 Nguyen T T, Tran N H, Bui N K, et al. Road Materials and Pavement Design, 2022, 24(3), 795.
9 Xun H Y, Guo R X, Yan Y, et al. Materials Reports, 2023, 37(S2), 177 (in Chinese).
郇海洋, 郭荣鑫, 晏永, 等. 材料导报, 2023, 37(S2), 177.
10 Yang X W, Liu K. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2008(3), 43 (in Chinese).
杨锡武, 刘克. 石家庄铁道学院学报(自然科学版), 2008(3), 43.
11 Cheng G X, Shen B X, Li H B, et al. Journal of East China University of Science and Technology (Natural Science Edition), 2008(3), 319 (in Chinese).
程国香, 沈本贤, 李海彬, 等. 华东理工大学学报(自然科学版), 2008(3), 319.
12 Jin M L, Yang J H, Shi M R, et al. Coal Conversion, 2001(4), 87 (in Chinese).
金鸣林, 杨俊和, 史美仁, 等. 煤炭转化, 2001(4), 87.
13 Huang W Q, Liu M F, Cao M M, et al. Materials Today Communications, 2024, 38, 108218.
14 Tang N, Dong R. Construction and Building Materials, 2020, 250, 118858.
15 Sumit K S, Akanksha P, Sham S, et al. Construction and Building Materials, 2022, 314(Part B), 125609.
16 Zheng C F, Nie L, Zhang L, et al. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5), 1284 (in Chinese).
郑传峰, 佴磊, 张力, 等. 吉林大学学报(工学版), 2011, 41(5), 1284.
17 Xie S N, Yi J Y, Zhou Y, et al. Construction and Building Materials, 2023, 364, 129914.
18 Xie S N, Yi J Y, Feng D C, et al. China Journal of Highway and Transport, 2021, 34(10), 60 (in Chinese).
解赛楠, 易军艳, 冯德成, 等. 中国公路学报, 2021, 34(10), 60.
19 Abdulgazi G, Abdullah H L. Canadian Journal of Civil Engineering, 2016, 43(6), 532.
20 Dawid D M, Sridhar R, Subhendu B, et al. Construction and Building Materials, 2016, 126(11), 976.
21 Hao J H, Cheng G X, Shen B X. Petroleum Asphalt, 2007(5), 55 (in Chinese).
郝金辉, 程国香, 沈本贤. 石油沥青, 2007(5), 55.
22 Jin M L, Shi M R. Journal of Shanghai Institute of Technology (Natural Science), 2002(3), 154 (in Chinese).
金鸣林, 史美仁. 上海应用技术学院学报 (自然科学版), 2002(3), 154.
23 Hou R, Qiao M. Petroleum Asphalt, 2022, 36(4), 1 (in Chinese).
侯睿, 乔明. 石油沥青, 2022, 36(4), 1.
24 Hao J H, Cheng G X, Shen B X. Journal of East China University of Science and Technology (Natural Science Edition), 2008(3), 324 (in Chinese).
郝金辉, 程国香, 沈本贤. 华东理工大学学报 (自然科学版), 2008(3), 324.
25 Shan L Y. Fatigue & rheology mechanism of asphalt binder based on viscoelastic characteristic. Master's Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).
单丽岩. 基于粘弹特性的沥青疲劳-流变机理研究. 硕士学位论文, 哈尔滨工业大学, 2011.
[1] 高潮, 谢怀进, 高晓青, 韩迎东. 过渡金属硫化物SERS及食品安全检测研究进展[J]. 材料导报, 2025, 39(9): 24040021-8.
[2] 高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
[3] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[4] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[5] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[6] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[7] 朱燕丽, 马川义, 张吉哲, 范秀泽, 何亮, 姚占勇. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J]. 材料导报, 2025, 39(6): 24010156-8.
[8] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[9] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[10] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[11] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[12] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[13] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[14] 张园, 曹子萱, 虞将苗, 于华洋, 邹桂莲. 聚合物改性沥青老化机理研究综述[J]. 材料导报, 2025, 39(10): 24030218-12.
[15] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed