Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030126-9    https://doi.org/10.11896/cldb.24030126
  金属与金属基复合材料 |
TA1薄壁管约束压缩为鼓包的变形行为研究
莫宁宁1, 冯治国1,2,*, 陶亮1, 江玉莲1, 刘勇1
1 贵州大学机械工程学院,贵阳 550025
2 贵州大学贵州省特色装备及制造技术重点实验室,贵阳 550025
Study on the Deformation Behavior of TA1 Thin-walled Tube into Bulge by Constrained Compression
MO Ningning1, FENG Zhiguo1,2,*, TAO Liang1, JIANG Yulian1, LIU Yong1
1 College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2 Guizhou Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 67711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TA1钛合金薄壁管的塑性变形直接影响鼓包成形质量。在不考虑温度对TA1流动应力的影响下,基于DEFORM进行二次开发,建立了TA1薄壁管的轴向约束压缩数值模型。通过仿真和实验分析了TA1薄壁管压缩为鼓包的变形行为,探讨了约束体厚度H、模具行程S、约束体孔径D以及模具速度V对薄壁管径向流动行为的影响。所开展的仿真与实验得出的鼓包区域形状尺寸相对误差在9.7%内,验证了TA1薄壁管的轴向约束压缩模型在描述材料的流动行为方面的准确性。鼓包的C1区域变形程度最大,金属流线最密集,应力集中和硬化现象最明显。各因素对鼓包直径的影响程度排序为H>D>S>V
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫宁宁
冯治国
陶亮
江玉莲
刘勇
关键词:  DEFORM二次开发  TA1  薄壁管  鼓包  本构    
Abstract: The plastic deformation of a TA1 titanium alloy thin-walled tube directly affects the quality of bulging forming. Without considering the influence of temperature on the flow stress of TA1, a numerical model for axial constrained compression of TA1 thin-walled tube was established through secondary development of DEFORM. The behavior of compressing TA1 thin-walled tube into bulges was analyzed through simulation and experiments. The influence of the binding object height H, die stroke S, binding object hole diameter D, and die velocity V on the radial flow behavior of the thin-walled tube was analyzed. The results indicate that the relative error of dimensions describing shape of the bulge area is within 9.7%, which verifies that the axially constrained compression model of TA1 thin-walled tube can describe the flow behavior of the material accurately. The C1 region of the bulge has the largest degree of deformation, the densest metal flow lines, and the most obvious stress concentration and hardening phenomenon. The effects of the aforementioned four parameters on the bulge diameter can be sequenced as H>D>S>V.
Key words:  DEFORM secondary development    TA1    thin-walled tube    bulge    constitutive
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TG146  
基金资助: 国家自然科学基金(52165042);贵州科学技术基金重点项目(黔科合基础[2020]1Z049);贵州省优秀青年人才项目(黔科合平台人才[2021]5617号);贵阳市科技人才培养项目(筑科合同[2021]43-1号);贵州省科技计划项目(黔科合支撑[2023]一般308);贵大人基合字(2022)09号;贵州省研究生教育创新计划项目(2024YJSKYJJ033)
通讯作者:  *冯治国,博士,贵州大学机械工程学院教授、博士研究生导师。目前主要从事机器人技术及应用、运动控制技术、材料加工的研究工作。zgfeng@gzu.edu.cn   
作者简介:  莫宁宁,贵州大学机械工程学院硕士研究生,在冯治国教授的指导下进行研究。目前主要研究领域为金属的塑性变形行为。
引用本文:    
莫宁宁, 冯治国, 陶亮, 江玉莲, 刘勇. TA1薄壁管约束压缩为鼓包的变形行为研究[J]. 材料导报, 2025, 39(10): 24030126-9.
MO Ningning, FENG Zhiguo, TAO Liang, JIANG Yulian, LIU Yong. Study on the Deformation Behavior of TA1 Thin-walled Tube into Bulge by Constrained Compression. Materials Reports, 2025, 39(10): 24030126-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030126  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030126
1 Bi J, Ma B L, Zhang Y L, et al. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5), 893 (in Chinese).
毕静, 马博林, 张艳苓, 等. 北京航空航天大学学报, 2020, 46(5), 893.
2 Chen C, Shuang Y H, Chen J X, et al. Rare Metal Materials and Engineering, 2023, 52(3), 959 (in Chinese).
陈晨, 双远华, 陈建勋, 等. 稀有金属材料与工程, 2023, 52(3), 959.
3 Gao Y F, Fang X E, Xiong J, et al. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (5), 851 (in Chinese).
高延峰, 方向恩, 熊俊, 等. 北京航空航天大学学报, 2020, 46 (5), 851.
4 Lai J, Huang Z, Tang N, et al. Materials, 2022, 15(23), 8643.
5 Zhang X, He X, Xing B, et al. Journal of Materials Processing Tech-nology, 2019, 279, 116550.
6 Zhang M L, Zhang D Y, Liu J J, et al. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8), 1606 (in Chinese).
张明亮, 张德远, 刘佳佳, 等. 北京航空航天大学学报, 2019, 45(8), 1606.
7 Zhang C L, Bao X Y, Zhang J Y, et al. Rare Metal Materials and Engineering, 2021, 50(2), 717 (in Chinese).
张崇乐, 包翔云, 张金钰, 等. 稀有金属材料与工程, 2021, 50(2), 717.
8 Wu F, Chen Y, Zhao S, et al. Composite Structures, 2022, 288, 115415.
9 Zhang Z J, Huang L, Li B C, et al. Composite Structures, 2021, 276, 114584.
10 Mantena P, Murty V, Rao N. Materials Today Proceedings, 2021, 43(2), 2342.
11 Li H, Sun H, Liu H, et al. Journal of Materials Processing Technology, 2021, 296(11), 117199.
12 Liu J, Li L Y, Li X, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(10), 2093 (in Chinese).
刘静, 李兰云, 李霄, 等. 中国有色金属学报, 2016, 26(10), 2093.
13 Zhang G C, Guo C Q, Yan Z K, et al. Materials Reports, 2021, 35(24), 24158 (in Chinese).
张光成, 郭超群, 闫治坤, 等. 材料导报, 2021, 35(24), 24158.
14 Yang X D, An T, Feng X L, et al. Acta Materiae Compositae Sinica, 2020, 37(8), 1850 (in Chinese).
杨旭东, 安涛, 冯晓琳, 等. 复合材料学报, 2020, 37(8), 1850.
15 Deng J H, Tang C, Li C F, et al. Journal of Plasticity Engineering, 2012, 19(6), 114 (in Chinese).
邓将华, 唐超, 李春峰, 等. 塑性工程学报, 2012, 19(6), 114.
16 Chen H, Fu Z H, Chen D L, et al. Journal of Mechanical Engineering, 2023, 59(8), 132 (in Chinese).
陈辉, 傅作华, 陈得良, 等. 机械工程学报, 2023, 59(8), 132.
17 Luo J T, Zhao J Q, Yang Z Y, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(12), 327 (in Chinese).
骆俊廷, 赵静启, 杨哲懿, 等. 航空学报, 2021, 42(12), 327.
18 Zeng Z Q. Research on macro-micro evolutionary behavior of hot deformation of SA508Gr. 4N steel based on DEFORM secondary development. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
曾志钦. 基于DEFORM二次开发的SA508Gr. 4N钢的热变形宏微观演化行为研究. 硕士学位论文, 华南理工大学, 2020.
19 Li S, Zhang S, Li H, et al. Composite Structures, 2022, 281, 115022.
20 Maistro G, Oikonomou C, Rogstrm L, et al. Surface and Coatings Technology, 2017, 322,141.
21 Gutierrez C E J, Hernandez M M G, Salinas R A, et al. Materials Letters, 2019, 252, 42.
22 Patnaik R K S. Ceramics International, 2021, 47(14), 20494.
[1] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[2] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[3] 张佳庆, 尚峰举, 黄杰, 张含灵, 盛友杰. 典型水成膜泡沫灭火剂流变性研究[J]. 材料导报, 2025, 39(5): 23110197-6.
[4] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[5] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[6] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[7] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[8] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[9] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[10] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[13] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[14] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[15] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed