Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24020062-8    https://doi.org/10.11896/cldb.24020062
  无机非金属及其复合材料 |
乙二胺衍生物对钢渣水化硬化特性的影响
岳德钰, 张大江*, 王剑锋, 霍鹏臣, 刘晓, 刘辉, 常磊, 贺定勇, 崔素萍
北京工业大学材料科学与工程学院,北京 100124
Effect of Ethylenediamine Derivatives on Hydration and Hardening Properties of Steel Slag
YUE Deyu, ZHANG Dajiang*, WANG Jianfeng, HUO Pengchen, LIU Xiao, LIU Hui, CHANG Lei, HE Dingyong, CUI Suping
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 15050KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对钢渣水化活性低的问题,研究了三种典型乙二胺衍生物(乙二胺四乙醇(THEED)、乙二胺四乙酸(EDTA)和乙二胺四亚甲基膦酸(EDTMPA))对钢渣浆体力学性能、水化物相组成和微孔结构等方面的影响。结果表明:相比于EDTA和EDTMPA,THEED对钢渣硬化浆体的抗压强度有更为显著的提升作用,其3 d和28 d抗压强度分别增长了7.33倍和5.45倍。THEED除了对钢渣浆体硅铝矿物相溶解-水化有促进作用外,其特有的羟基团对铁相溶解也表现出显著效果。在THEED作用下钢渣浆体中生成了典型的团簇片状AFm固溶相(单碳型水化碳铝酸钙,C4(A,F)-H11),其与C-S-H等水化产物的共同作用显著降低了钢渣硬化浆体中大孔的数量和孔径,提高了微结构致密程度,从而使浆体力学性能得以明显提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳德钰
张大江
王剑锋
霍鹏臣
刘晓
刘辉
常磊
贺定勇
崔素萍
关键词:  钢渣  乙二胺衍生物  力学性能  溶解-水化  AFm固溶相    
Abstract: Aiming to address the low hydration activity of steel slag, thiswork investigated the influence of three typical ethylenediamine derivatives (THEED, EDTA, and EDTMPA) on the mechanical property, hydration product composition, and microstructure of steel slag paste, almost its hydration mechanism. The results indicate that, compared to EDTA and EDTMPA, THEED significantly enhances the compressive strength of the steel slag hardened paste, and the 3 d and 28 d compressive strength growth rates were 7.33 times and 5.45 times, respectively. In addition to promoting the dissolution-hydration of silicoaluminate minerals in the steel slag paste, the unique hydroxyl group of THEED also demonstrates a significant effect on the dissolution of iron phases. The steel slag paste forms typical cluster-like AFm solid solution phases (monocarboaluminate hydrate, C4(A, F)ĈH11) under the influence of THEED, which combine other hydrated products such as C-S-H significantly reduces the number and size of large pores in the hardened paste, leading to densification of the microstructure and a notable improvement in mechanical properties.
Key words:  steel slag    ethylenediamine derivatives    mechanical property    dissolution-hydration    AFm solid solution phase
发布日期:  2025-05-29
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52202016;52202017)
通讯作者:  *张大江,博士,北京工业大学材料科学与工程学院助理研究员、硕士研究生导师。目前主要从事新型石灰胶凝材料和工业固废资源化利用研究工作。zhangdaj2021@bjut.edu.cn   
作者简介:  岳德钰,北京工业大学材料科学与工程学院博士研究生,目前主要研究领域为绿色建筑材料与钢渣高性能化。
引用本文:    
岳德钰, 张大江, 王剑锋, 霍鹏臣, 刘晓, 刘辉, 常磊, 贺定勇, 崔素萍. 乙二胺衍生物对钢渣水化硬化特性的影响[J]. 材料导报, 2025, 39(11): 24020062-8.
YUE Deyu, ZHANG Dajiang, WANG Jianfeng, HUO Pengchen, LIU Xiao, LIU Hui, CHANG Lei, HE Dingyong, CUI Suping. Effect of Ethylenediamine Derivatives on Hydration and Hardening Properties of Steel Slag. Materials Reports, 2025, 39(11): 24020062-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020062  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24020062
1 Sun J, Zhang Z, Zhuang S, et al. Construction and Building Materials, 2020, 241, 118141.
2 Ren X, Wang H G, Wu Y D, et al. Environmental Engineering, 2022, 40(8), 220(in Chinese).
任旭, 王会刚, 吴跃东, 等. 环境工程, 2022, 40(8), 220.
3 Quan D, Guan X F, Zhang M L, et al. JuShe, 2023(3), 46(in Chinese).
全冬, 管秀发, 张明亮, 等. 居舍, 2023(3), 46.
4 Wang J F, Chang L, Wang Y, et al. Materials Reports, 2023, 37 (11), 119(in Chinese).
王剑锋, 常磊, 王艳, 等. 材料导报, 2023, 37(11), 119.
5 Feng J J, Sun J W. Construction and Building Materials, 2020, 234, 116948.
6 Zhuang S Y, Wang Q. Cement and Concrete Research, 2021, 140, 106283.
7 Xiao W B, Li L L, Zhao F Q. Environmental Science and Technology, 2015, 38 (12), 194(in Chinese).
肖文斌, 李兰兰, 赵风清. 环境科学与技术, 2015, 38(12), 194.
8 Feng J J, Sun J W. Construction and Building Materials, 2020, 234, 116948.
9 Lun Y X, Zhou M K, Chen M Z. Mining Express, 2006 (4), 37(in Chinese).
伦云霞, 周明凯, 陈美祝. 矿业快报, 2006(4), 37.
10 Zhao J H, Li Z H, Zhu H R, et al. Construction and Building Materials, 2024, 411, 134795.
11 Cui S P, Yang S G, Wang J F, et al. Journal of Beijing Institute of Technology, 2016, 42 (7), 1108(in Chinese).
崔素萍, 杨松格, 王剑锋, 等. 北京工业大学学报, 2016, 42(7), 1108.
12 Wang J F, Chang L, Yue D Y, et al. Journal of Cleaner Production, 2022, 365, 132824.
13 Wang X L, Wang J F, Yang S G, et al. Journal of Ceramics, 2017, 45 (2), 206(in Chinese).
王雪莉, 王剑锋, 杨松格, 等. 硅酸盐学报, 2017, 45(2), 206.
14 Xu Z Q, Xu K, Sun J F, et al. Journal of Ceramics, 2017, 45 (8), 1113(in Chinese).
徐芝强, 徐凯, 孙晋峰, 等. 硅酸盐学报, 2017, 45(8), 1113.
15 Li G H. The synthesis of DEIPA and EDIPA and their impact on cement properties Master’s Thesis, Nanjing University of Technology, China, 2012(in Chinese).
李国华. DEIPA、EDIPA的合成及对水泥性能的影响. 硕士学位论文, 南京理工大学, 2012.
16 Huo B B, Li B L, Chen C, et al. Construction and Building Materials, 2021, 280, 122500.
17 Antoni M, Rossen J, Martirena F, et al. Cement and Concrete Research. 2012, 42(12), 1579.
18 Liguori B, Aprea P, Gennaro B D, et al. Materials, 2019, 12(24), 4231.
19 Chang L, Wang J F, Cui S P, et al. Journal of Cleaner Production, 2024, 447, 141448.
20 Aggelakopoulou E, Bakolas A, Moropoulou A. Applied Clay Science, 2011, 53(1), 15.
21 Zaribaf B H, Kurtis K E. Materials and Structures. 2018, 51(1), 1.
22 Liu Y X, Zhang Y L, Li L F, et al. Journal of Materials in Civil Engineering, 2023, 35(4), 23.
23 Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials, CRC Press, Boca Raton, 2018.
24 Teng Y B, Liu S H, Zhang Z C, et al. Construction and Building Materials, 2022, 315, 125612.
25 Kapeluszna E, Kotwica L, Rozycka A, et al. Construction and Building Materials, 2017, (155), 643.
26 Cui C Y, Yu C Y, Zhao J Y, et al. KSCE Journal of Civil Engineering, 2022, 26(9), 3803.
27 Zhang Y R, Zhang X S, Cai X P, et al. Construction and Building Materials, 2022, 315, 125743.
28 Chang L, Liu H, Wang J F, et al. Construction and Building Materials, 2022(357), 129372.
29 Ghorbani S, Sun Y, Mohan M, et al. Case Studies in Construction Materials, 2023, 18, e01981.
30 Zhang G L, Wu Z, Deng Y, et al. Journal of Materials Science and Engineering, 2022, 40(3), 466(in Chinese)
张国丽, 武志红, 邓悦, 等. 材料科学与工程学报, 2022, 40(3), 466.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed