Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030220-9    https://doi.org/10.11896/cldb.23030220
  无机非金属及其复合材料 |
Ni-CeO2黑色防护镀层的光助动电位沉积及光热性能
吴世伟, 杨雨萌*, 段雪佳, 蓝世锋, 李舒铭, 朱本峰, 卫国英
中国计量大学材料与化学学院,杭州 310018
Photo-Assisted Potentiodynamic Deposition and Photothermal Properties of Ni-CeO2 Black Protective Coatings
WU Shiwei, YANG Yumeng*, DUAN Xuejia, LAN Shifeng, LI Shuming, ZHU Benfeng, WEI Guoying
College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 36944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍镀层作为一种重要的工程材料,已经在金属涂装等领域得到了广泛的应用,而二氧化铈作为一种重要的稀土氧化物也引起了学者们极大的关注。本工作利用光助动电位沉积法制备了Ni-CeO2复合黑色镀层,分别研究了光照条件、沉积电位范围和沉积温度对镀层结构、组成和性能的影响。采用循环伏安法、塔菲尔极化曲线、接触角测量仪、台阶仪、紫外-可见-近红外分光光度计、发射率测量仪、扫描电子显微镜及附属能谱对不同条件下制备的镀层进行了系列表征。结果表明,光照条件下,沉积电位范围为0~-1.5 V、沉积温度为50 ℃时制备的Ni-CeO2复合黑色镀层具有最佳的综合性能,其腐蚀电流密度为9.642×10-6 A·cm-2,水接触角达到125.95°,各波段吸收率均在94%以上且具有0.592的发射率。当沉积电位范围为0~-3.5 V时,镀层具有最高的发射率,达0.757;光照条件除了对CeO2的沉积产生影响之外,也显著提升了Ni的沉积速率。该研究为制备具有高吸收率和发射率的黑色复合镀层提供了一个思路,有望在光热转换和光学仪器中得到应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴世伟
杨雨萌
段雪佳
蓝世锋
李舒铭
朱本峰
卫国英
关键词:  动电位沉积  镍-二氧化铈  复合黑色镀层  沉积电位  沉积温度  光照    
Abstract: Nickel coatings, as important engineering materials, have been widely used in many industrial fields. Ceria, as an important rare earth oxide, has also attracted great attention of scholars. In this work, Ni-CeO2 composite black coatings were prepared by photo-assisted potentiodynamic deposition. The effects of light, deposition potential range and temperature on the structure, composition and properties of the coatings were studied. The coatings prepared under different conditions were characterized by cyclic voltammetry, Tafel polarization curves, contact angle measurement, stylus profiler, ultraviolet-visible-near-infrared spectrophotometer, dual-band emittance measuring instrument, scanning electron microscopy and energy dispersive spectrometry. The results show that the Ni-CeO2 composite black coating prepared at the deposition potential range of 0—-1.5 V, the temperature of 50 ℃ and with the photo illumination has the best comprehensive properties: the corrosion current density of 9.642 × 10-6 A·cm-2, water contact angle of 125.95°, the absorptivity above 94% and the emissivity of 0.592. When the deposition potential range is 0—-3.5 V, the coating has the highest emissivity of 0.757. Photo illumination not only affects the deposition rate of CeO2, but also significantly increases the deposition rate of Ni. This study provides an idea to prepare black composite coatings with high absorptivity and emissivity, which can be expected to be applied in photothermal conversion and optical instruments.
Key words:  potentiodynamic deposition    nickel-ceria    composite black coating    deposition potential    deposition temperature    photo illumination
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TB331  
基金资助: 国家自然科学基金(52001300;52171083)
通讯作者:  * 杨雨萌,中国计量大学材料与化学学院讲师、硕士研究生导师。2013年上海应用技术学院应用化学专业本科毕业,2018年浙江大学化学系化学专业博士毕业后到中国计量大学工作至今。目前主要从事表面功能材料、电化学等方面的研究工作。主持国家自然科学基金1项,发表论文20余篇,授权发明专利14项。yangyumeng@cjlu.edu.cn   
作者简介:  吴世伟,2022年6月在石家庄铁道大学获得工学学士学位。现为中国计量大学材料与化学学院硕士研究生,在杨雨萌老师的指导下进行研究。目前主要从事表面功能材料研究。
引用本文:    
吴世伟, 杨雨萌, 段雪佳, 蓝世锋, 李舒铭, 朱本峰, 卫国英. Ni-CeO2黑色防护镀层的光助动电位沉积及光热性能[J]. 材料导报, 2024, 38(14): 23030220-9.
WU Shiwei, YANG Yumeng, DUAN Xuejia, LAN Shifeng, LI Shuming, ZHU Benfeng, WEI Guoying. Photo-Assisted Potentiodynamic Deposition and Photothermal Properties of Ni-CeO2 Black Protective Coatings. Materials Reports, 2024, 38(14): 23030220-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030220  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030220
1 Bahramian A, Eyraud M, Vacandio F, et al. Journal of Applied Electrochemistry, 2019, 49(6), 621.
2 Liu Y, Beckett D, Hawthorne D. Applied Surface Science, 2011, 257(9), 4486.
3 Somasundaram S, Pillai A M, Rajendra A, et al. Journal of Alloys and Compounds, 2015, 643, 263.
4 Perevoznikov S, Tsybulskaya L, Shendyukov V, et al. Surfaces and Interfaces, 2022, 32, 102127.
5 Lizama-Tzec F I, Herrera-Zamora D M, Arés-Muzio O, et al. Solar Energy, 2019, 194, 302.
6 Somasundaram S, Pillai A M, Rajendra A, et al. Solar Energy Materials and Solar Cells, 2018, 174, 163.
7 Khorsand S, Raeissi K, Ashrafizadeh F. Applied Surface Science, 2014, 305, 498.
8 Li Y D, Geng S J, Chen G. International Journal of Hydrogen Energy, 2018, 43(28), 12811.
9 Zhou X W, Shen Y F. Surface and Coatings Technology, 2014, 249, 6.
10 Calado L M, Taryba M G, Carmezim M J, et al. Corrosion Science, 2018, 142, 12.
11 Phala M F, Popoola A P I, Fayomi O S I. Procedia Manufacturing, 2017, 7, 543.
12 Zhou X W, Shen Y F. Surface and Coatings Technology, 2013, 235, 433.
13 Jiang X Y, Yang Y M, Qin Z Z, et al. Surface and Coatings Technology, 2023, 454, 129173.
14 Kamada K, Higashikawa K, Inada M, et al. Journal of Physical Chemistry C, 2007, 111, 14508.
15 Yang Y M, Du X Q, Yang Y, et al. Journal of the Electrochemical Society, 2015, 162(4), D166.
16 Yang Y M, Yang Y, Du X Q, et al. Thin Solid Films, 2017, 627, 44.
17 Zhou P W, Li W, Li Y, et al. Journal of the Electrochemical Society, 2017, 164(2), D75.
18 Zhang Z H, Sridhar S, Wei G Y, et al. Surface and Coatings Technology, 2021, 408, 126809.
19 Epelboin I, Wiart R. Journal of the Electrochemical Society, 1971, 118, 1577.
20 Hasannejad H, Shahrabi T, Jafarian M, et al. Journal of Alloys and Compounds, 2011, 509(5), 1924.
21 Hamlaoui Y, Pedraza F, Remazeilles C, et al. Materials Chemistry and Physics, 2009, 113(2-3), 650.
22 Kamada K, Moriyasu A. Journal of Materials Chemistry, 2011, 21, 4301.
23 Yang Y M, Du X Q, Yi C X, et al. Applied Surface Science, 2018, 440, 1073.
24 Nakayama K, Hiraga T, Zhu C Y, et al. Applied Surface Science, 2017, 423, 968.
25 Yang Y, Dong Z G, Zhang Z, et al. International Journal of Electroche-mical Science, 2017, 12, 2112.
26 Zhu B F, Ou R J, Liu J, et al. Surfaces and Interfaces, 2022, 28, 101608.
27 Zhu B F, Liu Z H, Liu J, et al. Progress in Organic Coatings, 2020, 140, 105510.
28 Liu J G, Fang X T, Zhu C Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125498.
29 Shen L D, Fan M Z, Qiu M B, et al. Applied Surface Science, 2019, 483, 706.
30 Wang Z, Shen L D, Jiang W, et al. Surface and Coatings Technology, 2019, 377, 124886.
31 Yang Y, Yang Y M, Fu T W, et al. Thin Solid Films, 2014, 556, 128.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed