Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23030122-6    https://doi.org/10.11896/cldb.23030122
  金属与金属基复合材料 |
薄壁H65黄铜管高频感应焊接接头组织和力学性能
蔡琰1,2, 周雷1,2, 叶枫1,2, 张炎雨1,2, 谢志雄1,2,*, 董仕节1,2,3, 谈芬芳3, 解剑英4
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 湖北隆中实验室,湖北 襄阳 441000
3 武汉轻工大学机械工程学院,武汉 430023
4 武汉市博钛新材料科技有限公司,武汉 430058
Microstructure and Mechanical Properties of Thin-walled H65 Brass Pipe Welded Joint by High Frequency Induction
CAI Yan1,2, ZHOU Lei1,2,YE Feng1,2, ZHANG Yanyu1,2, XIE Zhixiong1,2,*, DONG Shijie1,2,3, TAN Fenfang3, XIE Jianying4
1 Hubei Key Laboratory of Green Light Industrial Materials, Hubei University of Technology, Wuhan 430068, China
2 Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, China
3 School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
4 Wuhan Botal New Materials Technology Co., Ltd., Wuhan 430058, China
下载:  全 文 ( PDF ) ( 9591KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对薄壁H65黄铜高频感应焊接后的焊接接头微观组织和力学性能进行了研究。结果表明,利用高频感应焊接技术焊接H65黄铜管,获得了表面成型良好的焊接接头,实现了高质量焊接。焊接接头熔合区和热影响区均呈上下宽,中间窄的腰鼓状,焊接接头宽度约为173 μm,其中熔合区宽约15 μm,由大量细小的等轴状晶粒和少量条状晶粒组成,熔合区和热影响区的晶粒较母材得到细化。焊接接头抗拉强度为400 MPa,达到母材抗拉强度的97.6%,这是由于在拉伸变形过程中,晶粒的细化阻碍位错变形,且各晶粒间的位向差使位错相互交割,提高了焊接接头的强度;焊接接头断裂发生在热影响区,为韧性断裂,这是焊接过程中挤压辊的加工硬化与焊后退火软化共同作用影响热影响区力学性能所致。焊接接头显微硬度呈现“ʌ”形分布,熔合区平均硬度值为145HV,热影响区137HV,母材129HV,熔合区硬度较母材提高了16%,焊接时产生的加工硬化使熔合区强度得到提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡琰
周雷
叶枫
张炎雨
谢志雄
董仕节
谈芬芳
解剑英
关键词:  H65黄铜  高频焊  微观组织  力学性能    
Abstract: The microstructures and mechanical properties of high-frequency induction welded joints of thin-walled H65 brass pipe were studied. The results show that high frequency induction welding technology used to weld H65 brass pipe can obtain well-formed welds on the surface and achieve high-quality welding. The fusion zone and heat affected zone of the welded joint are shaped like a waist drum, which with a narrow waist. The width of the welded joint and the fusion zone is about 173 μm and 15 μm, respectively. The microstructure of the fusion zone is composed of numerous small equiaxed grains and a small amount of strip grains. The grains in the fusion zone and heat affected zone are refined compared with the base metal. The tensile strength of the welded joint is 400 MPa, which is 97.6% of the tensile strength of the base metal. The increase of the strength of the welded joint is due to the dislocation deformation hindered by the refinement of grains and the interaction of dislocations promoted by the phase orientation difference between grains in the process of tensile deformation. The fracture of welded joint occurs in the heat affected zone due to the offset between work hardening during welding and anneal softening after welding, and the fracture mode of welded joint is mainly ductile fracture. The microhardness of the welded joint shows a ‘ʌ’ shape distribution. The average hardness values of the fusion zone, the heat affected zone and the base metal is 145HV, 137HV and 129HV, respectively. The hardness of the fusion zone is increased by 16% compared with that of the base metal. The increase of the strength of the fusion zone is caused by the work hardening generated during welding.
Key words:  H65 brass    high frequency welding    microstructure    mechanical property
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(51771071);湖北省国际科技合作项目(2022EHB020);湖北隆中实验室自主创新项目(2022ZZ-17)
通讯作者:  * 谢志雄,工学博士,湖北工业大学副教授,硕士研究生导师,材料成型及控制工程系副主任兼党支部书记,2012年6月于上海交通大学材料加工工程专业获工学博士学位。迄今为止发表论文20余篇,其中SCI /EI收录论文15余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目,获湖北省科技进步奖三等奖和湖北省自然科学三等奖各1项,主要从事高强高导铜合金的制备、组织性能和强化机理研究,产氢铝合金的制备、产氢机理方面的研究,超薄壁钛管、不锈钢管、铝合金管的高频感应焊接研究。xzx@hbut.edu.cn   
作者简介:  蔡琰,2020年6月毕业于武汉华夏理工学院智能制造学院,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在谢志雄老师的指导下进行研究,目前的主要研究领域为薄壁H65黄铜的高频感应焊接。
引用本文:    
蔡琰, 周雷, 叶枫, 张炎雨, 谢志雄, 董仕节, 谈芬芳, 解剑英. 薄壁H65黄铜管高频感应焊接接头组织和力学性能[J]. 材料导报, 2024, 38(14): 23030122-6.
CAI Yan, ZHOU Lei,YE Feng, ZHANG Yanyu, XIE Zhixiong, DONG Shijie, TAN Fenfang, XIE Jianying. Microstructure and Mechanical Properties of Thin-walled H65 Brass Pipe Welded Joint by High Frequency Induction. Materials Reports, 2024, 38(14): 23030122-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030122  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23030122
1 Zhou S P, Liu H S. Journal of Plasticity Engineering, 2021, 28(12), 63 (in Chinese).
周树平, 刘红生. 塑性工程学报, 2021, 28(12), 63.
2 Heidarzadeh A, Saeid T. Rare Metals, 2018, 37, 388.
3 Wang W, Wang K S, Wu J L, et al. Ordnance Material Science and Engineering, 2008, 231(6), 12 (in Chinese).
王文, 王快社, 武佳蕾, 等. 兵器材料科学与工程, 2008, 231(6), 12.
4 Zhang L. Automatic TIG welding processes and microstructure & mechanical properties of copper tube joints. Master's Thesis, Shandong University, China, 2018 (in Chinese).
张亮. 典型铜管件自动TIG焊接工艺及接头组织性能分析. 硕士学位论文, 山东大学, 2018.
5 Qiu J F. Special Casting & Nonferrous Alloys, 2012, 32(10), 973 (in Chinese).
邱葭菲. 特色铸造及有色金属, 2012, 32(10), 973.
6 Zhao K L. The effect of induction heating process parameters of copper and brass inserts on microstructure and properties of brazed joints. Master's Thesis, China University of Petroleum (East China), China, 2019 (in Chinese).
赵凯磊. 紫铜与黄铜插套接头感应加热工艺参数对钎焊接头组织与性能的影响. 硕士学位论文, 中国石油大学(华东), 2019.
7 Zhang C, Qin Z, Rong C, et al. Materials, 2020, 13, 2401.
8 Moghaddam M S, Parvizi R, Haddad-Sabzevar M, et al. Materials & Design, 2011, 32, 2749.
9 Xiao S G, Xie Z X, Xu Z H, et al. Welding Technology, 2020, 49(12), 1 (in Chinese).
肖述广, 谢志雄, 许章华, 等. 焊接技术, 2020, 49(12), 1.
10 Kang C, Shi C, Liu Z, et al. Journal of Manufacturing Processes, 2020, 59, 772.
11 Egger C, Kroll M, Kern K, et al. Materials, 2022, 15, 3615.
12 Egger C, Marco.Lüchinger, Schreiner M, et al. Materials (Basel, Swit-zerland), 2022, 15,1270.
13 Zhang W D, Zhao G Q, Fu Q J. Materials Science & Engineering, A, 2018, 736, 276.
14 Chen Q, Xiao S G, Wang C, et al. Transactions of Materials and Heat Treatment, 2022, 43(6), 175 (in Chinese).
陈琪, 肖述广, 王超, 等. 材料热处理学报, 2022, 43(6), 175.
15 Xiao S G, Xie Z X, Chen Z, et al. Materials Reports, 2023, 37(1), 194 (in Chinese).
肖述广, 谢志雄, 陈卓, 等. 材料导报, 2023, 37(1), 194.
16 Hu S L. Welded Pipe and Tube, 2017, 40(6), 61 (in Chinese).
胡松林. 焊管, 2017, 40(6), 61.
17 Sabzi M, Kianpour-Barjoie A, Ghobeiti-Hasab M, et al. Archives of Me-tallurgy & Materials, 2018, 63, 1693.
18 Goto S, Nakata H, Toyoda S, et al. Metallurgical & Materials Transactions A, 2017, 48, 5075.
19 Zaffaroni G G B, Mishin O V, Ciucani U M, et al. Materials Characte-rization, 2021, 173, 110939.
20 Zhang H J, Cao C P, Shan Q Q, et al. Electric Welding Machine, 2021, 51(7), 37 (in Chinese).
张海军, 曹春鹏, 单清群, 等. 电焊机, 2021, 51(7), 37.
21 Sui X, Song B W, Li B, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(6), 1049 (in Chinese).
隋贤, 宋宝韫, 李冰, 等. 中国有色金属学报, 2009, 19(6), 1049.
22 Wang X J, Da C B, Li J, et al. The Chinese Journal of Nonferrous Me-tals, 2006, 16(5), 775 (in Chinese).
王希靖, 达朝炳, 李晶, 等. 中国有色金属学报, 2006, 16(5), 775.
23 Zhang C Q, Qin Z, Rong C, et al. Journal of Mechanical Engineering, 2020, 56(12), 65 (in Chinese).
张昌青, 秦卓, 荣琛, 等. 机械工程学报, 2020, 56(12), 65.
24 Li Y, Zhang X K, He K J, et al. The Chinese Journal of Nonferrous Me-tals, 2016, 26(1), 66 (in Chinese).
李祎, 张祥凯, 何克坚, 等. 中国有色金属学报, 2016, 26(1), 66.
25 Guo X N, Huang H Q, Gong D Y, et al. Transactions of Matterials and Heat Treatment, 2017, 38(10), 23 (in Chinese).
郭晓妮, 黄慧强, 龚殿尧, 等. 材料热处理学报, 2017, 38(10), 23.
26 Wu X W. Influence of alloying on microstructure and properties of H62 brass. Master's Thesis, University of Jinan, China, 2017 (in Chinese).
武祥为. 合金化对H62黄铜组织和性能影响. 硕士学位论文, 济南大学, 2017.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed