Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040402-12    https://doi.org/10.11896/cldb.22040402
  无机非金属及其复合材料 |
水泥稳定再生碎石物理力学性能研究进展
兰雪江, 张翛*, 王永宝, 郝忠卿
太原理工大学土木工程学院,太原 030024
Research Progress on Physical and Mechanical Properties of Cement Stabilized Macadam Incorporating Recycled Aggregate
LAN Xuejiang, ZHANG Xiao*, WANG Yongbao, HAO Zhongqing
College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 18829KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生集料的使用对交通基础设施建设的可持续发展具有重要意义,将其用于集料占比大而强度要求低的水泥稳定碎石基层具有较大的推广价值,但目前相关研究及应用较少,缺乏系统总结。本文对水泥稳定再生碎石物理力学性能研究进行综述,统计了再生集料基本性能指标,总结了再生集料、水泥、龄期和外掺物等因素对水泥稳定再生碎石物理力学性能的影响,得到以下结论:再生集料性能较低,应进行表面处理并合理掺配,当掺量小于40%时,水泥稳定再生碎石各项性能降幅均较小,掺量较大时性能降低显著;再生集料替代粒径越大,干燥收缩性能越高,但强度、刚度和抗冲刷等性能降低;水泥掺量的增加提高了水泥稳定再生碎石的强度、刚度、抗冲刷和疲劳等性能,但其收缩性能降低,因此在满足基层强度和刚度的基础上,应适当减少水泥掺量以有效降低收缩;水泥稳定再生碎石的强度和收缩等均在28 d龄期达到稳定,因此其应进行适当龄期的养护,以满足后续面层施工要求;添加适当的外掺物虽然降低了水泥稳定再生碎石的强度和刚度,但提高了其收缩和疲劳性能,因此可缓解基层开裂。然而,不同粒径的再生集料对水泥稳定再生碎石物理力学性能的影响机理不明确,可将其作为今后研究的切入点,为其在路面工程设计和施工中的应用提供理论和技术支撑;此外,不同来源的再生集料对水泥稳定再生碎石性能的影响不同,今后研究应以吸水率和压碎值等作为修正系数控制指标,对其掺量与水泥稳定再生碎石性能模型进行修正。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰雪江
张翛
王永宝
郝忠卿
关键词:  再生集料  水泥稳定碎石  强度  刚度  收缩  抗冲刷  疲劳    
Abstract: The application of recycled aggregate material in transportation infrastructure construction is essential for sustainable development. There is great potential for the use of large proportions of recycled aggregate in cement stabilized macadam bases with low strength requirements. However, there is a lack of systematic research and applications in this area. Research on the physical and mechanical properties of cement stabilized macadam incorporating recycled aggregate has been reviewed in this paper. The basic performance indicators of recycled aggregates are summarized, and the effects of recycled aggregate, cement, age and additives on the physical and mechanical performance of cement stabilized macadam are analyzed. The following conclusions are drawn: the performance of recycled aggregates is relatively limited, and thus surface treatment and appropriate mixing should be conducted. When the recycled aggregate content in cement stabilized macadam is less than 40%, the performance of the macadam decreases only slightly, while a higher aggregate content causes a significant decrease in performance. The larger the particle size of the recycled aggregate is, the greater the dry shrinkage performance, but with a decrease in strength, stiffness and anti-scouring performance. Increasing the cement content can improve the strength, stiffness, anti-scouring and fatigue performance of cement stabilized ma-cadam incorporating recycled aggregate, but shrinkage performance decreases. Therefore, the cement content should be reduced appropriately to effectively reduce shrinkage while ensuring the strength and stiffness of the subgrade. The strength and shrinkage of cement stabilized maca-dam incorporating recycled aggregate stabilize at 28 days; appropriate maintenance should be performed to meet requirements of subsequent surface construction. Adding appropriate additives reduces the strength and stiffness but improves the shrinkage and fatigue properties; this can be used to reduce base cracking. However, effects of different particle sizes on physical and mechanical properties of cement stabilized macadam incorporating recycled aggregate are still unclear. The results of this study can be used as the basis for future research to provide theoretical support for the application of recycled aggregates with different particle sizes in pavement engineering design and construction. In addition, recycled aggregates from different sources have varying impacts on the performance of cement stabilized macadam. Therefore, in future research, water absorption and crushing value should be used as the control indexes of the correction coefficient, and models of content and performance should be modified accordingly.
Key words:  recycled aggregate    cement stabilized macadam    strength    stiffness    shrinkage    anti-scouring    fatigue
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB321  
基金资助: 国家自然科学基金(52178431);山西省回国留学人员科研资助项目(HGKY2019031);中国博士后科学基金(2020M670698);山西省基础研究计划项目(20210302123082);山西交通控股集团项目(20-JKKJ-17)
通讯作者:  *张翛,太原理工大学土木工程学院教授、博士研究生导师。2002年长安大学公路与城市道路工程专业本科毕业,2006年同济大学道路与铁道工程专业硕士毕业,2015年同济大学道路与铁道工程专业博士毕业,2019年到太原理工大学工作至今。目前主要从事先进交通材料、绿色道路养护技术等方面的研究工作。发表论文70余篇,包括Construction and Building Materials、Science of the Total Environment、International Journal of Pavement Engineering等。zhangxiao01@tyut.edu.cn   
作者简介:  兰雪江,2017年6月于燕山大学获得工学学士学位。现为太原理工大学博士研究生,在张翛教授的指导下进行研究。目前主要研究领域为道路工程材料。
引用本文:    
兰雪江, 张翛, 王永宝, 郝忠卿. 水泥稳定再生碎石物理力学性能研究进展[J]. 材料导报, 2024, 38(2): 22040402-12.
LAN Xuejiang, ZHANG Xiao, WANG Yongbao, HAO Zhongqing. Research Progress on Physical and Mechanical Properties of Cement Stabilized Macadam Incorporating Recycled Aggregate. Materials Reports, 2024, 38(2): 22040402-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040402  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22040402
1 Cai X, Wu K H, Huang W K, et al. Road Materials and Pavement Design, 2020, 22, 2181.
2 Haichert R, Kelln R, Wandzura C, et al. Transportation Research Record, 2012, 2310, 121.
3 Busari A, Adeyanju E, Loto T, et al. Journal of Physics: Conference Series, 2019, 1378, 022026.
4 Zhang C B, Hu M M, Dong L, et al. Resources, Conservation and Recycling, 2019, 149, 649.
5 Ahmed H, Tiznobaik M, Huda B S, et al. Construction and Building Materials, 2020, 262(30), 119979.
6 Wang B, Yan L B, Fu Q N, et al. Resources, Conservation and Recycling, 2021, 171, 105565.
7 Xuan D X, Houben L J M, Molenaar A A A, et al. Materials and Design, 2012, 33, 496.
8 Zheng Y X, Zhang P, Cai Y C, et al. Composites Part B: Engineering, 2019, 165, 312.
9 Sun Y, Li L H. Construction and Building Materials, 2018, 166, 118.
10 Shalabi F I, Mazher J, Khan K, et al. Materials, 2019, 12(4), 600.
11 Martinez-Echevarria M, Lopez-Alonso M, Garach L, et al. Construction and Building Materials, 2020, 263, 120517.
12 Nwakaire C M, Yap S P, Onn C C, et al. Construction and Building Materials, 2020, 235, 117444.
13 Hou Y Q, Ji X P, Su X L. International Journal of Pavement Enginee-ring, 2017, 20, 1.
14 Lv S T, Xia C D, You L Y, et al. Construction and Building Materials, 2019, 223, 775.
15 Lv S T, Yuan J, Liu C C, et al. Construction and Building Materials, 2019, 223, 491.
16 Tanvir I, Asif A, Sahadat H M, et al. Infrastructures, 2020, 5(9), 70.
17 Chen Q. Research on the application of semi-rigid base performance and design parameters based on the durability of the recycled aggregate of the old cement concrete. Ph. D. Thesis, South China University of Techno-logy, China, 2013 (in Chinese).
陈强. 基于旧水泥混凝土再生集料的耐久性半刚性基层性能及设计参数的应用研究. 博士学位论文, 华南理工大学, 2013.
18 Xiao J, Wu C F, Zhan Z H, et al. China Journal of Highway and Transport, 2017, 30(2), 25 (in Chinese).
肖杰, 吴超凡, 湛哲宏, 等. 中国公路学报, 2017, 30(2), 25.
19 Hu L Q, Sha A M. China Journal of Highway and Transport, 2012, 25(3), 73 (in Chinese).
胡力群, 沙爱民. 中国公路学报, 2012, 25(3), 73.
20 Tian Y, Niu D Y. Journal of Chang’an University (Natural Science Edition), 2020, 40(4), 39 (in Chinese).
田源, 牛冬瑜. 长安大学学报(自然科学版), 2020, 40(4), 39.
21 Sun Y D, Zhou D Y. Concrete, 2006(4), 25 (in Chinese).
孙跃东, 周德源. 混凝土, 2006(4), 25.
22 Hu H M, Sun Y X. Journal of Hefei University of Technology, 2009, 32(2), 238 (in Chinese).
扈惠敏, 孙业香. 合肥工业大学学报(自然科学版), 2009, 32(2), 238.
23 Daniel M, Chakravarthi S, Shankar S. Easychair, 2020, preprint no. 4108.
24 Zhang L L. Key technologies on reuse and reactivation in building mate-rials of all components of waste concrete. Ph. D. Thesis, China University of Mining and Technology, China, 2018 (in Chinese).
张领雷. 废弃混凝土全组分建材化再生利用的关键技术研究. 博士学位论文, 中国矿业大学, 2018.
25 Li Q F, Hu J. Sustainability, 2020, 12(7380), 1.
26 Ren J, Wang S, Zang G. Construction and Building Materials, 2020, 244, 118329.
27 Yan K Z, Li G K, You L Y, et al. Construction and Building Materials, 2020, 233, 117326.
28 Shi Y H. An experiment research on road engineering of recycled aggregate from abandoned concrete. Master’s Thesis, Hefei University of Technology, China, 2007 (in Chinese).
石义海. 废弃混凝土再生骨料道路基层试验研究. 硕士学位论文, 合肥工业大学, 2007.
29 Bai G, Zhu C, Liu C, et al. Construction and Building Materials, 2020, 240, 117978.
30 Fu J L. Experimental investigation on utilize technology of waste cement concrete pavement. Master’s Thesis, Hefei University of Technology, China, 2007 (in Chinese).
付佳丽. 废旧水泥混凝土路面再生利用技术的试验研究. 硕士学位论文, 合肥工业大学, 2007.
31 Lyu K, Garboczi E J, She W, et al. Cement and Concrete Composites, 2019, 99, 49.
32 Scrivener K L, Crumbie A K, Laugesen P. Interface Science, 2004, 12(4), 411.
33 Guo Y C, Yao C, Shen A, et al. Journal of Cleaner Production, 2020, 263, 121452.
34 Ji X P, Jiang Y J, Liu Y J. Materials and Structures, 2016, 49, 2257.
35 Balbo J T. In: International Purdue Conference on Concrete Pavement Design and Materials for High Performance. Indiana, USA, 1997, pp. 195.
36 Lan X J, Zhang X, Wang Y B, et al. Journal of Taiyuan University of Technology, 2022, 53(3), 551 (in Chinese).
兰雪江, 张翛, 王永宝, 等. 太原理工大学学报, 2022, 53(3), 551.
37 Gardner N J, Lockman M J. ACI Materials Journal, 2001, 98(2), 159.
38 209 AC. ACI 209 R-92 prediction of creep, shrinkage, and temperature effects in concrete structures, American Concrete Institut, Detroit, USA, 1992, pp. 5.
39 Bazant Z P, Murphy W P. Matériaux Et Constructions, 1995, 28(180), 357.
40 Beton C E D. CEB-FIP model code 1990 design code, Thomas Thelford, Lausanne, UK, 1993, pp. 57.
41 Zhu T L, Tan Z M, Zhou Y M. Journal of Building Materials, 2012, 15(4), 565.
42 Sha A M, Jia K, Li X G. Journal of Traffic and Transportation Enginee-ring, 2009, 9, 29.
43 Zhao Z D, Wang S Y, Ren J L, et al. Construction and Building Mate-rials, 2021, 301, 124122.
44 Suleman M, Ahmad N, Khan S U, et al. Construction and Building Materials, 2021, 275, 122099.
45 Lan X J, Zhang X, Hao Z Q, et al. Case Studies in Construction Mate-rials, 2022, 16, e00984.
46 Zhang R H. Research on application of waste concrete in cement stabilized crushed stone base. Master’s Thesis, Chang’an University, China, 2020 (in Chinese).
张荣华. 废弃混凝土在水泥稳定碎石基层中的应用研究. 硕士学位论文, 长安大学, 2020.
47 Shiran J, Vigneswaran G. In: The 7th International Conference on Sustainable Built Environment. Sri Lanka, 2016, pp. 62.
48 Chen F, Tong S H. Journal of Yangtze River Scientific Research Institute, 2020, 37(2), 159 (in Chinese).
陈峰, 童生豪. 长江科学院院报, 2020, 37(2), 159.
49 Leite F D C, Motta R D S, Vasconcelos K L, et al. Construction and Building Materials, 2011, 25(6), 2972.
50 Ministry of Transport of the People’s Republic of China. Technical guidelines for construction of highway roadbases, China Communications Press Co., Ltd., China, 2015 (in Chinese).
中华人民共和国交通运输部. 公路路面基层施工技术细则: JTG/T F20-2015, 人民交通出版社, 2015.
51 Li Y, Sun X, Yin J. In: Geo Shanghai International Conference. Shanghai, 2010, pp. 184.
52 Wang H F, Liu H Y, Xiao Z R. Advanced Materials Research, 2011, 250, 3502.
53 Xu C. Study on the anti-cracking performance of semi-rigid base course using recycled concrete aggregates. Master’s Thesis, South China University of Technology, China, 2013 (in Chinese).
徐驰. 利用再生集料的半刚性基层抗裂性能研究. 硕士学位论文, 华南理工大学, 2013.
54 Zuo J. Construction waste stabilized gravel base in water reuse technology research. Master’s Thesis, Southeast University, China, 2018 (in Chinese).
左洁. 建筑废弃物在水稳碎石基层再利用技术研究. 硕士学位论文, 东南大学, 2018.
55 Zeng M L, Tian Z, Xiao J, et al. Journal of Wuhan University of Techno-logy, 2016, 38(1), 34 (in Chinese).
曾梦澜, 田振, 肖杰, 等. 武汉理工大学学报, 2016, 38(1), 34.
56 Tian Z. Performance of cement stabilized crushed stone pavement base materials containing construction waste. Master’s Thesis, Hunan University, China, 2016 (in Chinese).
田振. 含建筑垃圾水稳碎石路面基层材料的使用性能. 硕士学位论文, 湖南大学, 2016.
57 Pan R G, Zhang F, Qian H T. Highway, 2014(11), 184 (in Chinese).
潘荣根, 张璠, 钱海涛. 公路, 2014(11), 184.
58 Xue X, Gao J F, Hu K. Iranian Journal of Science and Technology, Transactions of Civil Engineering, doi:10.1007/s40996-021-00739-z.
59 Li X W, Dong M M. Applied Mechanics and Materials, 2011, 94, 31.
60 Gao D, Wang F. Journal of Building Engineering, 2021, 44, 102631.
61 Kirthika S, Singh S. Construction and Building Materials, 2020, 250, 118850.
62 Li L, Zhan B, Lu J, et al. Construction and Building Materials, 2019, 209, 147.
63 Zhao Z F, Remond S, Damidot D, et al. Construction and Building Materials, 2015, 81, 179.
64 Geng J, Chen Y Y, Sun J Y, et al. Advanced Materials Research, 2012, 446, 2028.
65 Li B, Hou S, Duan Z, et al. Construction and Building Materials, 2021, 268, 121172.
66 Guo Z G, Chen C, Lehman D E, et al. European Journal of Environmental and Civil Engineering, 2020, 24(2), 171.
67 Ren P F, Li B, Yu J G, et al. Journal of Cleaner Production, 2020, 267, 122115.
68 Li Z, Liu J P, Xiao J Z, et al. Cement and Concrete Composites, 2020, 108, 103444.
69 Angulo S, Ulsen C, John V, et al. Waste Management, 2009, 29(2), 721.
70 Zega C J, Maio Á A D. Waste Management, 2011, 31, 2336.
71 You L Y, Yue Y F, Yan K Z, et al. Road Materials and Pavement Design, doi:10.1080/14680629.2020.1740771.
72 Katz A. Journal of Materials in Civil Engineering, 2004, 16(6), 597.
73 Liao W Y, Sun X, Kumar A, et al. Frontiers in Materials, 2019, 6, 78.
74 Cai X, Li X, Wu K, et al. Journal of Highway and Transportation Research and Development (English Edition), 2018, 12(3), 1.
75 Zhou J, Zeng M, Chen Y, et al. Construction and Building Materials, 2019, 199, 143.
76 Mohammadinia A, Arulrajah A, Sanjayan J, et al. Journal of Materials in Civil Engineering, 2015, 27(6), 4014186.
77 Yin J, Xu Y F, Li Y J. Journal of Railway Science and Engineering, 2007, 4(6), 44 (in Chinese).
尹健, 徐运锋, 李益进. 铁道科学与工程学报, 2007, 4(6), 44.
78 Xu S F, Wang R W, Gao Y M, et al. Highway, 2019, 64(10), 24 (in Chinese).
徐世法, 王荣伟, 高玉梅, 等. 公路, 2019, 64(10), 24.
79 Rashidi M, Ashtiani R S. In: International Conference on Transportation and Development 2018. Reston, VA, 2018, pp. 140.
80 Reddy B, Reddy G, Sashidhar C. Journal of Critical Reviews, 2020, 7(18), 1105.
81 Ahmed E A E B. Ain Shams Engineering Journal, 2013, 4(4), 661.
82 Xuan D, Houben L J, Molenaar A A A, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2010, 25(4), 696.
83 Fedrigo W, Núñez W P, Kleinert T R, et al. International Journal of Pavement Research and Technology, 2017, 10(5), 393.
84 Peng S X, Yin J. Highway, 2009(4), 229 (in Chinese).
彭松枭, 尹健. 公路, 2009(4), 229.
85 Lv S T, Xia C D, Liu H F, et al. International Journal of Pavement Engineering, 2019, 22(1), 1.
86 Deng C Q, Jiang Y J, Tian T, et al. International Journal of Pavement Engineering, doi:10.1080/10298436.2019.1696462.
87 Zhu T L, Tan Z M, Zhou Y M. Journal of Building Materials, 2013(4), 608 (in Chinese).
朱唐亮, 谈至明, 周玉民. 建筑材料学报, 2013(4), 608.
88 Chakravarthi S, Boyina A, Singh A K, et al. International Journal of Pavement Research and Technology, 2019, 12(6), 581.
89 Faysal M, Mahedi M, Aramoon A, et al. In:Proceedings of the Geotechnical and Structural Engineering Congress 2016. Phoenix, Arizona, 2016, pp. 1198.
90 Miao Y H, Yu W X, Hou Y, et al. Sustainability, 2018, 10, 3505.
91 Disfani M M, Arulrajah A, Haghighi H, et al. Construction and Building Materials, 2014, 68, 667.
92 Xuan D X, Molenaar A A A, Houben L J M. Cement and Concrete Composites, 2016, 68, 27.
93 Li X, Lv X, Wang W, et al. Journal of Cleaner Production, 2020, 243, 118525.
94 Farhan A H, Dawson A R, Thom N H, et al. Materials and Design, 2015, 88, 897.
95 Chen Y, Li Z, Wang J, et al. Advances in Civil Engineering, 2022, 2022, 4321781.
96 Liu Q Y, He M, Wang J. Advanced Materials Research, 2014, 936, 1446.
97 Wang H P, Wang P. Journal of Highway and Transportation Research and Development, 2013, 30, 12.
98 Centonze G, Leone M, Aiello M A. Construction and Building Materials, 2012, 36, 46.
99 Carneiro J A, Lima P R L, Leite M B, et al. Cement and Concrete Composites, 2014, 46, 65.
100 Kim S B, Yi N H, Kim H Y, et al. Cement and Concrete Composites, 2010, 32(3), 232.
101 Ma Y, Gu J, Li Y, et al. Construction and Building Materials, 2015, 83, 230.
102 Farhan A H, Dawson A R, Thom N H. Construction and Building Materials, 2018, 179, 488.
103 Zhang T Z. Experimental study on the permeable semi-rigid base mixture. Master’s Thesis, Changsha University of Science and Technology, China, 2009 (in Chinese).
张天泽. 透水半刚性基层混合料路用性能试验研究. 硕士学位论文, 长沙理工大学, 2009.
104 Arulrajah A, Perera S, Wong Y C, et al. Construction and Building Materials, 2020, 239, 117819.
105 Jiao X G, Huang R. New Chemical Materials, 2020, 48(S1), 124 (in Chinese).
焦晓光, 黄瑞. 化工新型材料, 2020, 48(S1), 124.
106 Zhao Y, Yang X, Zhang Q Y, et al. Advances in Civil Engineering, DOI:10.1155/2020/6564076.
107 Liu J, Huang L P, Li X J, et al. Journal of University of Shanghai for Science and Technology, 2021, 43(5), 460 (in Chinese).
刘纪, 黄丽平, 李秀君, 等. 上海理工大学学报, 2021, 43(5), 460.
108 Wu R L. Research on road performance of polyvinyl alcohol fiber cement stabilized crushed stone. Master’s Thesis, Chang’an University, China, 2020 (in Chinese).
乌日乐. 聚乙烯醇纤维水泥稳定碎石路用性能研究. 硕士学位论文, 长安大学, 2020.
109 Zhang P, Li Q F. Journal of Reinforced Plastics and Composites, 2010, 29(12), 1851.
110 Fedrigo W, Núñez W P, Castañeda lópez M A, et al. Construction and Building Materials, 2018, 171, 161.
111 Fang N R, Hu S Q, Li Q Q, et al. Highway, 2022, 67(9), 51 (in Chinese)
房娜仁, 胡士清, 李琪琪, 等. 公路, 2022, 67(9), 51.
112 Wang C. Strength prediction and integrity evaluation of cement stabilized graded crushed stone base. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
王成. 水泥稳定级配碎石基层强度预估和整体性评价. 硕士学位论文, 哈尔滨工业大学, 2020.
113 Xu Y L, Yang G, Zhao H Y. Journal of Advanced Transportation, DOI:10.1155/2020/2469436.
114 Sainz-Aja J A, Carrascal I A, Polanco J A, et al. Cement and Concrete Composites, 2022, 125, 104309.
[1] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[6] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[7] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[8] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[9] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[10] 刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
[11] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[12] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[13] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[14] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[15] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed