Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040315-8    https://doi.org/10.11896/cldb.22040315
  宇航材料 |
空间探测烧蚀防热材料应用及发展
梁馨*, 宋朝晖, 方洲, 邓火英, 毛科铸, 吴东日
航天材料及工艺研究所,北京 100076
Application and Trend of Ablation Thermal Protection Materials for Space Exploration
LIANG Xin*, SONG Zhaohui, FANG Zhou, DENG Huoying, MAO Kezhu, WU Dongri
Aerospace Research Institute of Material & Processing Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 7334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 烧蚀防热材料因其高可靠性及宽适用性而被绝大多数空间探测器所采用。不同的空间探测目标、探测器进入/再入弹道、探测器外形和防热结构质量限制等因素使得烧蚀防热材料种类繁多,但轻量高效是其发展的重要特征;除此以外,可靠性也至关重要,在不同的热环境下,不同材料会表现出不同的烧蚀行为和特征,使得烧蚀防热材料成为空间探测活动成败的关键。本文综述了国内外探测器烧蚀防热材料的种类及应用情况,美国主要包括高密度酚醛/玻璃钢、蜂窝增强型防热材料、树脂浸渍型防热材料以及碳酚醛材料等,国内主要包括酚醛/尼龙、蜂窝增强型防热材料和NF材料,介绍了这些材料所应用的探测器、气动加热环境、防热材料性能和防热结构成型技术,总结了美国空间探测防热材料研制中出现的两次烧蚀异常及导致的探测器选材变化,可见防热材料与热环境耦合关系复杂。国内外针对防热材料抵御异常损伤开展了部分工作。已有试验结果表明,蜂窝增强型防热材料具有一定的优势。最后对空间探测防热材料的应用与发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁馨
宋朝晖
方洲
邓火英
毛科铸
吴东日
关键词:  空间探测  烧蚀  防热结构    
Abstract: Ablation thermal protection materials are used for the most of space probes due to high reliability and wide suitability. Ablation thermal protection materials have various kinds for defferent space exploration goals, entry/reentry trajactory of probe, probe configuration and limit of thermal protection strcture. Light and efficient are the important development characteristic of the ablation thermal protection materials. Furthermore, the reliability is vital important. Different thermal protection materials have different behaviors and characteristics in the different heat environment. Ablation thermal protection materials have critical role for the success of space exploration. The kinds and applications of ablation thermal protection materials for space exploration have been reviewed, including high density glass fiber reinforced phenolic plastics, honeycomb reinforced thermal protection material, resin infiltrated materials, carbon phenolic of US, and nylon phenolic, honeycomb reinforced thermal protection materials and NF materials of China. The applied space exploration probe, aerodynamic heating environment, the material properties and manufacture technology of the thermal protection structure are introduced. The anomaly ablation cases of the materials and the selected materials change of US space exploration are summarized. It is thus clear that the coupling relationship between thermal protection material and heat environment is complex. The research of thermal protection material on resisting anomaly damage in US and our country are introduced. It is showed that the honeycomb reinforced ablation thermal protection materials has advantages for the existing experiment results. The application and development of the thermal protection materials for space exploration are prospected at the end.
Key words:  space exploration    ablation    thermal protection structure
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB33  
通讯作者:  * 13810171997@139.com   
作者简介:  梁馨,研究员,2003年于北京航空航天大学获得学士学位,2008年6月于北京航空航天大学获得博士学位。目前主要研究领域为功能复合材料及结构复合材料。发表论文20余篇。
引用本文:    
梁馨, 宋朝晖, 方洲, 邓火英, 毛科铸, 吴东日. 空间探测烧蚀防热材料应用及发展[J]. 材料导报, 2022, 36(22): 22040315-8.
LIANG Xin, SONG Zhaohui, FANG Zhou, DENG Huoying, MAO Kezhu, WU Dongri. Application and Trend of Ablation Thermal Protection Materials for Space Exploration. Materials Reports, 2022, 36(22): 22040315-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040315  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040315
1 John H B, Kenneth S K. In: AlAA 61h Annual Meeting and Technical DisDlay.Anaheim, California, 1969.
2 Donald M C. Thermal protection systems manned spacecraft flight expe-rience. N93-12449, NASA,1992.
3 Bryanerb R, Greenshields D H, Chauvin T, et al. Journal of Spacecraft and Rockets, 1970, 7(6), 727
4 Graves R A,Wittte W G. Flight-test analysis of Apollo heat-shield mate-rial using the pacemaker vehicle system. NASA-TN-D-4713, 1968.
5 Acrouch R K, Walberg G D. Investigation of ablation behavior of Avcoat 5026 39M over a wide range of thermal environment. NASA-TM-X-1778 69N22933, 1969.
6 Richard A T, Victor L, Thomas J, et al. In: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2009.
7 Brian R H, Karen T B, Thomas J H. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
8 Brian R H, Thomas J H, Karen T B, et al. Experimental investigation of project orion crew exploration vehicle aeroheating in AEDC Tunnel 9. NASA/TP -2008-215547. Hampton, Virginia: NASA, 2008.
9 John K. In: 7th International Planetary Probe Workshop.Barcelona, Spain, 2010.
10 Willcockson H W. Journal of Spacecraft and Rockets,1999, 36(3),374.
11 Adam S, Prasun D, Wayne L, et al. In: AIAA ADS Conference. Monterey, California, 2003.
12 Michael J W, Chun Y T,Karl T E, et al. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2010.
13 Huy T, Michael T, William H, et al. Ames research center shear tests of SLA-561V heat shield material for Mars-Pathfinder. NASA-TM-110402 96N34006, NASA, 1996.
14 Hollis B R, Liechty D S. Journal of Spacecraft and Rockets,2006, 43(2),354.
15 Mckinney J, Ferguson P,Weber M L, et al. Boeing CST-100 landing and recovery system design and development testing, AIAA-2013-1262. Reston: AIAA,2013
16 Richard A T, Victor L, Thomas J, et al. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. Orlando, Florida, 2009.
17 Brian R H, Karen T B, Thomas J H. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
18 Brian R H, Thomas J H, Karen T B, et al. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating in AEDC Tunnel 9. NASA/TP-2008-215547. Hampton, Virginia: NASA, 2008.
19 Ethiraj V, James R. In: 6th International Planetary Probe Workshop, 2008.
20 Robin A S B, David M D, Eric M S. In: 6th International Planetary Probe Workshop.Atlanta, Georgia,USA, 2008.
21 Beck R, Driver D, Wright M, et al. In: 41st AIAA Thermophysics Conference. San Antonio, TX, 2009.
22 Beck R, Driver D, Wright M, et al. In: AIAA-2009-4229, 41st AIAA Thermophysics Conference. San Antonio, Texas, 2009.
23 Huy K T, Christine E J, Daniel J R, et al. Phenolic impregnated carbon ablators (PICA) as thermal protection systems for discovery missions. NASA-TM-110440 97N19369, NASA,1997.
24 Edquist K T, Hollis B R, Dyakonov A A. Mars science laboratory entry capsule aerothermo-dynamics and thermal protection system. In: NASA IEEAC Paper 1423, 2007.
25 White T, Hwang H, Ellerby D. Thermal Protection System Materials for Sample Return Missions. The NRC Decadal Survey Sub-Panels,2020.
26 Ellerby D. In: The 10th Ablation Workshop. Burlington, VT, 2018.
27 Milos F S, Chen Y K, Squire T H, et al. Journal of Spacecraft and Roc-kets,1999, 36(3),298.
28 Fimmel R O, Colin L, Burgess E.Pioneer Venus.NAS 1.21:461; NASA-SP-461, 83N30340, NASA,1983.
29 Willcockson B. Genesis sample return capsule overview. NASA-20070014646, NASA, 2005.
30 Laub B, Chen Y K.In: 41st AIAA Thermophysics Conference. San Antonio, TX, 2009.
31 Jean-Marc B, Francine B, Ludovic D, et al.In: 4th International Planetary Probe Workshop. Pasadena,California, 2006.
32 Karl T E, Artem A D,Michael J, et al.In: 41st AIAA Thermophysics Conference. San Antonio, Texas, 2009.
33 Ethiraj V, James R. In: 6th International Planetary Probe Workshop.Atlanta, Georgia,USA, 2008.
34 Kowal T J.In: JSC Commercial Human Space Flight Symposium.Houston, TX, 2010.
35 Jiang G Q. Chinese Space Science and Technology,1990(6),34(in Chinese).
姜贵庆.中国空间科学技术,1990(6),34
36 Xing L Q. Chinese Space Science and Technology,1991(2), 26(in Chinese).
邢连群.中国空间科学技术,1991(2),26.
37 Wang C M, Liang X, Sun B G, et al. Aerospace Materials & Technology, 2011, 41(2), 6(in Chinese).
王春明,梁馨,孙宝岗,等.宇航材料工艺,2011, 41(2), 6.
38 Dong Y Z, Liu F, Yang C H, et al. Scientia Sinica(Technologica), 2015, 45(2), 151(in Chinese).
董彦芝,刘峰,杨昌昊,等.中国科学:技术科学, 2015,45(2),151.
39 Zhang X, Dong W, Ma N, et al.Spacecraft Environment Engineering, 2018, 35(6), 599(in Chinese).
张璇,董薇,马宁,等.航天器环境工程,2018, 35(6),599.
40 Ethiraj V. In: 10th Ablation Workshop. Burlington,VT, 2018.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 马康智, 李春, 倪立勇, 杨震晓, 曲栋, 文波, 李炜. 氧乙炔与等离子烧蚀试验的系统评价研究[J]. 材料导报, 2022, 36(11): 21020107-5.
[3] 樊伟, 田甜, 崔艳芳, 周淑娟. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(Z2): 134-137.
[4] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[5] 樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed