Abstract: Long-term exposure to high temperature considerably accelerates the degradation of the electrical properties of piezoelectric ceramic components, which greatly affects their service life. In this study, lead-zirconate-titanate (PZT) piezoelectric ceramic components were subjected to long-term aging treatment at 85, 125, and 150 ℃, and the degradation law and micro-mechanism of the electrical properties of the PZT ceramic components were studied and analyzed during the high-temperature aging. The piezoelectric and dielectric constants both degraded significantly with an extended aging cycle. The initial degradation rate was slow, whereas the later degradation accelerated and gradually stabilized. The rates of degradation of the dielectric and piezoelectric constants both conformed to the Boltzmann law. The maximum dielectric constant degradation rates reached 31.01% and 36.48%, and the maximum piezoelectric constant degradation rates reached 11.57% and 19.02% at 85 ℃ and 125 ℃, respectively, after aging treatment for 49 days. The dielectric performance degradation of the PZT piezoelectric components was mainly attributed to the following: degradation of the internal structure of the Ag electrode on the surface, weakening of the Ag/PZT interface, and depolarization of the PZT ceramic, with the latter two being the dominant factors. The long-term high-temperature effect promoted the gradual and slow oxidation of the Ag electrode in generating Ag2S, and crystal grain shrinkage produced numerous pores. This in turn led to a decrease in the density of the Ag electrode and delamination of the Ag/PZT interface, which reduced the permittivity. In addition, the long-term high temperature accelerated the process whereby PZT ceramic domains were transformed into disordered states. It also promoted the displacement of oxygen vacancy to pin the domain wall and led to complete degradation of the dielectric performance of the PZT piezoelectric components.
1 Yao Z R, Chu R Q, Xu Z J, et al.Journal of Inorganic Materials, 2015, 30(9), 989 (in Chinese). 姚忠冉, 初瑞清, 徐志军, 等.无机材料学报, 2015, 30(9), 989. 2 Han S Q, Fan P Y, Nan B, et al. Journal of Netshape Forming Enginee-ring, 2020, 12(5), 66 (in Chinese). 韩胜强, 范鹏元, 南博, 等.精密成形工程, 2020, 12(5), 66. 3 Park S E, Shrout T R, et al. Journal of Applied Physics, 1997, 82(4), 1804. 4 Ji W W, Zhang S, Lu X L, et al. Materials Reports, 2020, 34(10), 20010 (in Chinese). 季万万, 张帅, 陆小龙,等. 材料导报, 2020, 34(10), 20010. 5 Damjanovic, D.Reports on Progress in Physics, 1998, 61(9), 1267. 6 Zhang Y, Lei T Y, Ren H, et al.Surface Technology, 2015, 44(5), 83 (in Chinese). 张玉, 雷天宇,任红, 等.表面技术, 2015, 44(5), 83. 7 Lu D H, Jiang Y H. Journal of Netshape Forming Engineering, 2021, 13(3), 40 (in Chinese). 卢德宏, 蒋业华. 精密成形工程, 2021, 13(3), 40. 8 Peng Z H, Zhang J, Zheng D Y, et al.Piezoelectrica & Acoustooptics, 2017, 39(6), 928 (in Chinese). 彭泽辉, 张静, 郑德一, 等.压电与声光, 2017, 39(6), 928. 9 Vittayakorn N, Rujijanagul G, Tan X, et al.Journal of Applied Physics, 2004, 96(9), 5103. 10 Fang B J, Du Q B, Zhou L M, et al.European Physical Journal-Applied Physics, 2010, 51(1), 10301. 11 Liu Y X, Li Z, Tang H Z, et al.Acta Physica Sinica, 2020, 69(21), 217704 (in Chinese). 刘亦轩, 李昭, 汤浩正, 等.物理学报, 2020, 69(21), 217704. 12 Wen K, Qiu J H, Ji H L, et al. Journal of Materials Science-Materials in Electronics, 2014, 25(7), 3003. 13 Pengjiang G L.Effect of the microstructure and orientation of grains on the performances of perovskite ferroelectric ceramics. Ph.D Thesis, University of Chinese Academy of Sciences, China, 2020 (in Chinese). 彭江古丽.微结构与晶粒取向对钙钛矿铁电陶瓷的性能影响研究. 博士学位论文, 中国科学院大学, 2020. 14 Shi C Y, Ma J, Wu J, et al. Journal of Alloys and Compounds, 2020, 846, 156245. 15 Zhang Y C, Glaum J, Ehmke M C, et al. Journal of Applied Physics, 2015, 118(12), 124108. 16 Malyshkina O V, Movchikova A A, Barabanova E V, et al. Integrated Ferroelectrics, 2011, 123, 47. 17 Liu G Q, Liu X M, Xu X L, et al.Equipment Environmental Engineering, 2020, 17(8), 119 (in Chinese). 刘国仟, 刘晓明, 徐晓亮, 等. 装备环境工程, 2020, 17(8), 119. 18 Gotmare S W, Leontsev S O, Eitel R E, et al. Journal of the American Ceramic Society, 2010, 93(7), 1965. 19 Phuetthonglang A, Marungsri B, Oonsivilai A, et al. Integrated Ferroelectrics, 2013, 149(1), 75. 20 Promsawat N, Promsawat M, Janphuang P, et al. Functional Materials Letters, 2017, 10(3), 1750026. 21 Guo L, Qiao X J, Li X Z, et al. Journal of Inorganic Materials, 2020, 35(12), 1380. 22 Kulczyk-Malecka J, Kelly P J, West G, et al. 2014, 66, 396. 23 Guruswamy S, Park S M, Hirth J P, et al. Oxidation of Metals, 1985, 26, 77. 24 He Y N, Wang D, Ye M, et al.Surface Technology, 2018, 47(5), 1 (in Chinese) . 贺永宁, 王丹, 叶鸣, 等.表面技术, 2018, 47(5), 1. 25 Yang X D, Zhao Q N, Han B, et al.Journal of the Chinese Ceramic Society, 2008, 36(7), 954 (in Chinese). 杨晓东, 赵青南, 韩宾, 等.硅酸盐学报, 2008, 36(7), 954. 26 Ye D L.Data handbook of practical inorganic thermodynamics, Metallurgical Industry Press, China,1981 (in Chinese). 叶大伦.实用无机物热力学数据手册, 冶金工业出版社, 1981. 27 Kleber C, Wiesinger R, Schnöller J, et al. Corrosion Science, 2008, 50(4), 1112. 28 Mayousse C, Celle C, Fraczkiewicz A, et al. Nanoscale, 2015, 7(5), 2107. 29 Liu B R, Hou C T, Zhao L B, et al. Equipment Environmental Enginee-ring, 2020, 17(1), 63 (in Chinese). 刘宝瑞, 侯传涛, 赵丽滨, 等. 装备环境工程, 2020, 17(1), 63. 30 Mi Q B, Xing Z G, Wang H D, et al. Materials Reports, 2021, 35(15), 15065 (in Chinese). 米庆博, 邢志国, 王海斗, 等. 材料导报, 2021, 35(15), 15065. 31 Li F, Lin D B, Chen Z B, et al. Nature Materials, 2018, 174(4), 349. 32 Lee G M, Kim B H, et al. Materials Chemistry and Physics, 2005, 91(1), 233. 33 Xu S H, Xu H P, Zhang T S, et al.New Chemical Materials, 2021, 49(5), 124. 徐世豪, 徐海萍, 张通姗, 等.化工新型材料, 2021, 49(5), 124. 34 Baraldi G, Carrada M, Toudert J, et al. Journal of Physical Chemistry C, 2013, 117(18), 9431. 35 Phatungthane T, Jaita P, Sanjoom R, et al. Surface & Coatings Technology, 2016, 306, 229. 36 Promsawat M, Marungsri B, Promsawat N, et al. Ceramics International, 2017, 43(13), 9709. 37 Goudarzi H, Baghshahi S. Journal of Materials Science-Materials in Electronics, 2017, 28(6), 4863. 38 Sova A, Kosarev V,Papyrin A, et al. Journal of Thermal Spray Technology, 2011, 20(1/2), 285. 39 Sun X. Preparation and corrosion resistance of Ce micro-arc oxidized coa-ting on AZ91D surface. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese). 孙鑫. AZ91D表面含Ce微弧氧化涂层的制备及耐蚀性研究. 硕士学位论文, 哈尔滨工业大学, 2019. 40 Hung F Y, Chen P S, Lui T S, et al.Materials Transactions, 2005, 46(12), 3020 41 Agapov R L, Sokolov A P, Foster M D, et al. Journal of Maman Spectroscopy, 2013, 44 (5), 710. 42 Peng G G, Zheng D Y, Hu S M. Journal of the Chinese Ceramic Society, 2016, 44(3), 380. 彭贵贵, 郑德一, 胡顺敏.硅酸盐学报, 2016, 44(3), 380.