Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21110230-8    https://doi.org/10.11896/cldb.21110230
  无机非金属及其复合材料 |
锆钛酸铅压电陶瓷元件高温老化行为及其微观机制
王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛*
西南技术工程研究所,重庆 401329
High-temperature Aging Behavior of Lead Zirconate Titanate Piezoelectric Ceramic Components and the Corresponding Micro-mechanism
WANG Xuan, SONG Kaiqiang, ZHANG Min, CONG Dalong, PENG Dong, DING Xingxing, BAI Yixin, HUANG Anwei, LI Zhongsheng*
Southwest Institute of Technology and Engineering, Chongqing 401329, China
下载:  全 文 ( PDF ) ( 8287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 长时高温作用会显著加速压电陶瓷元件电学性能的退化,极大地影响压电元件使用寿命。本工作在85、125和150 ℃下对PZT压电陶瓷元件进行长时老化处理,研究并分析了高温老化过程中PZT陶瓷元件电学性能退化规律及其微观机制。压电常数与介电常数随老化周期延长均退化明显,初期退化速率较慢,后期退化加快并逐渐趋于稳定,介电常数和压电常数退化均符合Boltzmann变化规律。85 ℃和125 ℃下老化49 d时,元件介电常数退化率达到最大,分别为31.01%和36.48%;压电常数退化率达到最大,分别为11.57%和19.02%。PZT压电元件介电性能退化主要由表面Ag电极内结构退化、Ag/PZT界面弱化及PZT陶瓷退极化三方面所贡献,其中界面弱化和陶瓷退极化占主导。长时高温作用促使Ag电极逐渐缓慢氧化生成Ag2S,晶粒收缩产生大量孔洞,导致Ag电极致密度下降和Ag/PZT界面分层,降低了Ag/PZT的电容率;此外,长时高温作用加速了PZT陶瓷电畴转向无序状态,促进氧空位位移钉扎电畴壁,导致了PZT压电元件介电性能退化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旋
宋凯强
张敏
丛大龙
彭冬
丁星星
白懿心
黄安畏
李忠盛
关键词:  Ag电极  PZT陶瓷  高温老化行为  表面氧化  界面弱化  退极化    
Abstract: Long-term exposure to high temperature considerably accelerates the degradation of the electrical properties of piezoelectric ceramic components, which greatly affects their service life. In this study, lead-zirconate-titanate (PZT) piezoelectric ceramic components were subjected to long-term aging treatment at 85, 125, and 150 ℃, and the degradation law and micro-mechanism of the electrical properties of the PZT ceramic components were studied and analyzed during the high-temperature aging. The piezoelectric and dielectric constants both degraded significantly with an extended aging cycle. The initial degradation rate was slow, whereas the later degradation accelerated and gradually stabilized. The rates of degradation of the dielectric and piezoelectric constants both conformed to the Boltzmann law. The maximum dielectric constant degradation rates reached 31.01% and 36.48%, and the maximum piezoelectric constant degradation rates reached 11.57% and 19.02% at 85 ℃ and 125 ℃, respectively, after aging treatment for 49 days. The dielectric performance degradation of the PZT piezoelectric components was mainly attributed to the following: degradation of the internal structure of the Ag electrode on the surface, weakening of the Ag/PZT interface, and depolarization of the PZT ceramic, with the latter two being the dominant factors. The long-term high-temperature effect promoted the gradual and slow oxidation of the Ag electrode in generating Ag2S, and crystal grain shrinkage produced numerous pores. This in turn led to a decrease in the density of the Ag electrode and delamination of the Ag/PZT interface, which reduced the permittivity. In addition, the long-term high temperature accelerated the process whereby PZT ceramic domains were transformed into disordered states. It also promoted the displacement of oxygen vacancy to pin the domain wall and led to complete degradation of the dielectric performance of the PZT piezoelectric components.
Key words:  Ag electrode    PZT ceramics    high temperature aging behavior    surface oxidation    interface weaking    depolarization
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TM282  
通讯作者:  *李忠盛,西南技术工程研究所正高级工程师,2002年重庆大学材料科学与工程专业本科毕业,2005年重庆大学材料物理与化学专业硕士毕业后到西南技术工程研究所工作至今,2012年重庆大学材料科学与工程专业博士毕业。目前主要从事特种功能材料及功能表面等方面的研究工作。发表论文30余篇,包括Surface Engineering、Surface & Coatings Technology等。zhongshli@163.com   
作者简介:  王旋,助理工程师,2018年江苏大学本科毕业,2020年哈尔滨工业大学硕士毕业后到西南技术工程研究所工作至今。目前主要研究领域为功能涂层。
引用本文:    
王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
WANG Xuan, SONG Kaiqiang, ZHANG Min, CONG Dalong, PENG Dong, DING Xingxing, BAI Yixin, HUANG Anwei, LI Zhongsheng. High-temperature Aging Behavior of Lead Zirconate Titanate Piezoelectric Ceramic Components and the Corresponding Micro-mechanism. Materials Reports, 2023, 37(18): 21110230-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110230  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21110230
1 Yao Z R, Chu R Q, Xu Z J, et al.Journal of Inorganic Materials, 2015, 30(9), 989 (in Chinese).
姚忠冉, 初瑞清, 徐志军, 等.无机材料学报, 2015, 30(9), 989.
2 Han S Q, Fan P Y, Nan B, et al. Journal of Netshape Forming Enginee-ring, 2020, 12(5), 66 (in Chinese).
韩胜强, 范鹏元, 南博, 等.精密成形工程, 2020, 12(5), 66.
3 Park S E, Shrout T R, et al. Journal of Applied Physics, 1997, 82(4), 1804.
4 Ji W W, Zhang S, Lu X L, et al. Materials Reports, 2020, 34(10), 20010 (in Chinese).
季万万, 张帅, 陆小龙,等. 材料导报, 2020, 34(10), 20010.
5 Damjanovic, D.Reports on Progress in Physics, 1998, 61(9), 1267.
6 Zhang Y, Lei T Y, Ren H, et al.Surface Technology, 2015, 44(5), 83 (in Chinese).
张玉, 雷天宇,任红, 等.表面技术, 2015, 44(5), 83.
7 Lu D H, Jiang Y H. Journal of Netshape Forming Engineering, 2021, 13(3), 40 (in Chinese).
卢德宏, 蒋业华. 精密成形工程, 2021, 13(3), 40.
8 Peng Z H, Zhang J, Zheng D Y, et al.Piezoelectrica & Acoustooptics, 2017, 39(6), 928 (in Chinese).
彭泽辉, 张静, 郑德一, 等.压电与声光, 2017, 39(6), 928.
9 Vittayakorn N, Rujijanagul G, Tan X, et al.Journal of Applied Physics, 2004, 96(9), 5103.
10 Fang B J, Du Q B, Zhou L M, et al.European Physical Journal-Applied Physics, 2010, 51(1), 10301.
11 Liu Y X, Li Z, Tang H Z, et al.Acta Physica Sinica, 2020, 69(21), 217704 (in Chinese).
刘亦轩, 李昭, 汤浩正, 等.物理学报, 2020, 69(21), 217704.
12 Wen K, Qiu J H, Ji H L, et al. Journal of Materials Science-Materials in Electronics, 2014, 25(7), 3003.
13 Pengjiang G L.Effect of the microstructure and orientation of grains on the performances of perovskite ferroelectric ceramics. Ph.D Thesis, University of Chinese Academy of Sciences, China, 2020 (in Chinese).
彭江古丽.微结构与晶粒取向对钙钛矿铁电陶瓷的性能影响研究. 博士学位论文, 中国科学院大学, 2020.
14 Shi C Y, Ma J, Wu J, et al. Journal of Alloys and Compounds, 2020, 846, 156245.
15 Zhang Y C, Glaum J, Ehmke M C, et al. Journal of Applied Physics, 2015, 118(12), 124108.
16 Malyshkina O V, Movchikova A A, Barabanova E V, et al. Integrated Ferroelectrics, 2011, 123, 47.
17 Liu G Q, Liu X M, Xu X L, et al.Equipment Environmental Engineering, 2020, 17(8), 119 (in Chinese).
刘国仟, 刘晓明, 徐晓亮, 等. 装备环境工程, 2020, 17(8), 119.
18 Gotmare S W, Leontsev S O, Eitel R E, et al. Journal of the American Ceramic Society, 2010, 93(7), 1965.
19 Phuetthonglang A, Marungsri B, Oonsivilai A, et al. Integrated Ferroelectrics, 2013, 149(1), 75.
20 Promsawat N, Promsawat M, Janphuang P, et al. Functional Materials Letters, 2017, 10(3), 1750026.
21 Guo L, Qiao X J, Li X Z, et al. Journal of Inorganic Materials, 2020, 35(12), 1380.
22 Kulczyk-Malecka J, Kelly P J, West G, et al. 2014, 66, 396.
23 Guruswamy S, Park S M, Hirth J P, et al. Oxidation of Metals, 1985, 26, 77.
24 He Y N, Wang D, Ye M, et al.Surface Technology, 2018, 47(5), 1 (in Chinese) .
贺永宁, 王丹, 叶鸣, 等.表面技术, 2018, 47(5), 1.
25 Yang X D, Zhao Q N, Han B, et al.Journal of the Chinese Ceramic Society, 2008, 36(7), 954 (in Chinese).
杨晓东, 赵青南, 韩宾, 等.硅酸盐学报, 2008, 36(7), 954.
26 Ye D L.Data handbook of practical inorganic thermodynamics, Metallurgical Industry Press, China,1981 (in Chinese).
叶大伦.实用无机物热力学数据手册, 冶金工业出版社, 1981.
27 Kleber C, Wiesinger R, Schnöller J, et al. Corrosion Science, 2008, 50(4), 1112.
28 Mayousse C, Celle C, Fraczkiewicz A, et al. Nanoscale, 2015, 7(5), 2107.
29 Liu B R, Hou C T, Zhao L B, et al. Equipment Environmental Enginee-ring, 2020, 17(1), 63 (in Chinese).
刘宝瑞, 侯传涛, 赵丽滨, 等. 装备环境工程, 2020, 17(1), 63.
30 Mi Q B, Xing Z G, Wang H D, et al. Materials Reports, 2021, 35(15), 15065 (in Chinese).
米庆博, 邢志国, 王海斗, 等. 材料导报, 2021, 35(15), 15065.
31 Li F, Lin D B, Chen Z B, et al. Nature Materials, 2018, 174(4), 349.
32 Lee G M, Kim B H, et al. Materials Chemistry and Physics, 2005, 91(1), 233.
33 Xu S H, Xu H P, Zhang T S, et al.New Chemical Materials, 2021, 49(5), 124.
徐世豪, 徐海萍, 张通姗, 等.化工新型材料, 2021, 49(5), 124.
34 Baraldi G, Carrada M, Toudert J, et al. Journal of Physical Chemistry C, 2013, 117(18), 9431.
35 Phatungthane T, Jaita P, Sanjoom R, et al. Surface & Coatings Technology, 2016, 306, 229.
36 Promsawat M, Marungsri B, Promsawat N, et al. Ceramics International, 2017, 43(13), 9709.
37 Goudarzi H, Baghshahi S. Journal of Materials Science-Materials in Electronics, 2017, 28(6), 4863.
38 Sova A, Kosarev V,Papyrin A, et al. Journal of Thermal Spray Technology, 2011, 20(1/2), 285.
39 Sun X. Preparation and corrosion resistance of Ce micro-arc oxidized coa-ting on AZ91D surface. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
孙鑫. AZ91D表面含Ce微弧氧化涂层的制备及耐蚀性研究. 硕士学位论文, 哈尔滨工业大学, 2019.
40 Hung F Y, Chen P S, Lui T S, et al.Materials Transactions, 2005, 46(12), 3020
41 Agapov R L, Sokolov A P, Foster M D, et al. Journal of Maman Spectroscopy, 2013, 44 (5), 710.
42 Peng G G, Zheng D Y, Hu S M. Journal of the Chinese Ceramic Society, 2016, 44(3), 380.
彭贵贵, 郑德一, 胡顺敏.硅酸盐学报, 2016, 44(3), 380.
[1] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[2] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[3] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[4] 王歆钰, 镇思琦, 董正超, 仲崇贵. 铁电材料的电热效应及其研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 13-18.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed