Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21010223-6    https://doi.org/10.11896/cldb.21010223
  无机非金属及其复合材料 |
顶部热籽晶熔融织构生长法制备的单畴GdBCO块材的超导性能(英文)
张嘉颖1, 袁玖玮1, 张玉凤1,*, 娄紫微1, 周文礼1, 张晓娟1, 彭麟1, 徐燕1, 徐建明2, 杨瑰婷2, 和泉充3
1 上海电力大学数理学院,上海 201306
2 上海空间电源研究所空间电源技术国家重点实验室,上海 200245
3 日本东京海洋大学应用物理实验室,东京135-8533
Superconducting Properties of Single-domain GdBCO Bulk Prepared by the Top-hot-seeded Melt-texture Growth Process
ZHANG Jiaying1, YUAN Jiuwei1, ZHANG Yufeng1,*, LOU Ziwei1, ZHOU Wenli1, ZHANG Xiaojuan1, PENG Lin1, XU Yan1, XU Jianming2, YANG Guiting2, IZUMI Mitsuru3
1 College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
2 State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
3 Laboratory of Applied Physics, Tokyo University of Marine Science and Technology, Tokyo 135-8533, Japan
下载:  全 文 ( PDF ) ( 8641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作在空气中成功地制备了直径为32 mm、厚度为13 mm的高性能、大尺寸GdBa2Cu3O7-δ(GdBCO)单畴超导块材。以YBa2Cu3O7-δ(Y123)作为液相源可以有效地避免生长过程中液相源的扩散流失,并有利于GdBCO超导块材的性能提升。通过研究该超导块材的超导性能和微观结构发现,整个样品的超导转变温度保持在94 K以上,最大捕获磁场 (Btrap) 可以达到0.29 T。在77 K的温度及自场条件下,由于Gd2BaCuO5(Gd211)粒子的富集,在距样品表面较远的边缘位置的B2样品中获得最大临界电流密度,其值可达 5.29×104 A/cm2。在离超导块材表面较近的区域,液相源的不足使得该区域的钉扎中心主要由氧缺陷来提供,而氧缺陷形成的磁通钉扎中心在籽晶下方聚集,并且其扩散速率会随着氧缺陷与籽晶间距离的增加而减小,这提高了籽晶下方位置的C1样品的临界电流密度,使之高于边缘位置的B1样品的临界电流密度。而在离超导块材表面稍远的区域,充足的液相源使该区域的钉扎中心主要由Gd211粒子来提供,而籽晶下方位置的C2样品和边缘位置的B2样品的临界电流密度相差不大,这是由于在离块材表面稍远的区域都存在大量的Gd211粒子作为磁通钉扎中心;并且由于Gd3+对Ba2+的替代,两者的临界电流密度在中高场下都有一定的提高,这对超导块材的应用非常重要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张嘉颖
袁玖玮
张玉凤
娄紫微
周文礼
张晓娟
彭麟
徐燕
徐建明
杨瑰婷
和泉充
关键词:  单畴GdBCO超导块材  顶部热籽晶熔融织构生长法  捕获磁通密度  临界电流密度    
Abstract: Alarge-sized GdBa2Cu3O7-δ (GdBCO) bulk superconductor with high performance, which is 32 mm in diameter and 13 mm in thickness, has been successfully fabricated by the top-hot-seeded melt-texture growth process in air. The YBa2Cu3O7-δ (Y123) is chosen as the liquid phase source, which can effectively avoid the leakage of the liquid phase during the crystal growth, ultimately leading to the performance improvement of the GdBCO bulk superconductor. Both superconducting properties and microstructure of the bulk have been investigated. It can be found that the superconducting transition temperature (TC) keeps above 94 K, and the maximum trapped magnetic flux density (Btrap) of the bulk is 0.29 T. The highest critical current density (JC) of 5.29×104 A/cm2 is obtained in the B2 specimen near the edge far from the surface of the bulk at 77 K in self field, which can be explained by the enrichment of the Gd2BaCuO5 (Gd211) particles. In the region close to the surface of the bulk, the pinning centers are mainly provided by the oxygen vacancies due to the insufficient liquid phase source. These oxygen vacancies highly aggregate under the seed and its diffusion rate decreases with the increase of the distance from the center during crystal growth, which results in a higher JC of the C1 specimen under the seed than JC of the B1 specimen near the edge. In comparison, in the region far from the surface of the bulk, the pinning centers are mainly provided by the Gd2BaCuO5 (Gd211) particles due to the sufficient liquid phase source. Owing to a large number of Gd211 particles as the effective pinning centers in the whole region far from the surface of the bulk, the JC of the C2 specimen under the seed is close to that of the B2 specimen near the edge. Moreover, the JC of both C2 and B2 specimens have been improved in intermediate and high fields because of the substitution of Ba2+ by Gd3+, which is vitally important for the engineering applications of the bulk superconductors.
Key words:  single-domain GdBCO bulk superconductor    top-hot-seeded melt-texture growth process    trapped magnetic flux density    critical current density
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG113.25  
基金资助: 国家自然科学基金(11004129);留学回国人员科研启动基金(SRF for ROCS, SEM);上海市教育委员会科研创新项目(11YZ197;12ZZ174);上海市自然科学基金(16ZR1422700);上海电力大学通识教育课程建设项目(20182203)
通讯作者:  *2009000018@shiep.edu.cn   
引用本文:    
张嘉颖, 袁玖玮, 张玉凤, 娄紫微, 周文礼, 张晓娟, 彭麟, 徐燕, 徐建明, 杨瑰婷, 和泉充. 顶部热籽晶熔融织构生长法制备的单畴GdBCO块材的超导性能(英文)[J]. 材料导报, 2022, 36(15): 21010223-6.
ZHANG Jiaying, YUAN Jiuwei, ZHANG Yufeng, LOU Ziwei, ZHOU Wenli, ZHANG Xiaojuan, PENG Lin, XU Yan, XU Jianming, YANG Guiting, IZUMI Mitsuru. Superconducting Properties of Single-domain GdBCO Bulk Prepared by the Top-hot-seeded Melt-texture Growth Process. Materials Reports, 2022, 36(15): 21010223-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010223  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21010223
1 Ida T, Li Z, Zhou D F, et al. Superconductor Science and Technology, 2016, 29, 054005.
2 Wang J S, Wang S Y, Zeng Y W, et al. Physica C, 2002, 378-381, 809.
3 Koshizuka N. Physica C, 2006, 445-448, 1103.
4 Mukherjee P, Rao V V. Physica C, 2019, 563, 67.
5 Shi Y H, Dennis A R, Durrell J H, et al. Superconductor Science and Technology, 2019, 32, 025005.
6 Zhou D F, Xu K, Hara S, et al. Superconductor Science and Technology, 2012, 25, 025022.
7 Zhang L J, Yang W M, Yang Z J, et al. Low Temperature Physical Letters, 2014, 36(2), 116 (in Chinese).
张龙娟, 杨万民, 杨志娟, 等. 低温物理学报, 2014, 36(2), 116.
8 Cardwell D A, Shi Y H,Babu N H, et al. Superconductor Science and Technology, 2010, 23, 034008.
9 Li H C, Fan W S, Peng B N, et al. Crystal Growth Design, 2015, 15(4), 1740.
10 Shi Y H, Dennis A R, Huang K Y, et al. Superconductor Science and Technology, 2018, 31, 095008.
11 Namburi D K, Shi Y H, Dennis A R, et al. Superconductor Science and Technology, 2018, 31, 044003.
12 Hajdova P, Shepa I, Mudra E, et al. Acta Physica Polonica A, 2020, 137(5), 800.
13 Volochová D, Diko P, Piovarči S, et al. Acta Physica Polonica A, 2017, 131(4),1009.
14 Shi Y, Durrell J H, Dennis A R, et al.Superconductor Science and Technology, 2017, 30, 015003.
15 Ma J, Chen Z L, Xian T, et al. Acta Physica Sinica, 2018, 67(7), 077401 (in Chinese).
马俊, 陈章龙, 县涛, 等. 物理学报, 2018, 67(7), 077401.
16 Zhou D F, Hara S, Li B Z, et al. Superconductor Science and Technology, 2013, 26, 015003.
17 Li G Z, Yang W M. Journal of the American Ceramic Society, 2010, 93(12), 4033.
18 Naik S P K, Muralidhar M, Takemura K, et al. Journal of Applied Phy-sics, 2019, 125, 093907.
19 Namburi D K, Durrell J H, Jaroszynski J, et al. Superconductor Science and Technology, 2018, 31, 125004.
20 Feng Z L, Yang W M, Li J W, et al. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2283.
21 Naik S P K, Muralidhar M, Murakami M. Journal of Superconductivity and Novel Magnetism, 2018, 31, 981.
22 Shi Y, Namburi D K, Zhao W, et al. Superconductor Science and Technology, 2016, 29, 015010.
23 Chauhan H S, Murakami M. Superconductor Science and Technology, 2000, 13, 672.
24 Hu A, Sakai N, Zhou H, et al. Physica C, 2004, 402, 127.
25 Xu K, Tsuzuki K, Hara S, et al. Superconductor Science and Technology, 2011, 24, 085001.
26 Xu K, Zhou D, Li B, et al. Physica C, 2015, 510, 54.
27 Zhang X J, Zhang Y F, Peng L Q, et al. Acta Physica Sinica, 2015, 64(24), 247401 (in Chinese).
张晓娟, 张玉凤, 彭里其, 等. 物理学报, 2015, 64(24), 247401.
28 Zhou W L, Zhang Y F, Peng L Q, et al. Low Temperature Physical Letters, 2016, 38(1), 21 (in Chinese).
周文礼, 张玉凤, 彭里其, 等. 低温物理学报, 2016, 38(1), 21.
29 Chen D X, Goldfarb R B. Journal of Applied Physics, 1989, 66, 2489.
30 Xu C X, Hu A M, Sakai N, et al. Physica C, 2006, 445-448, 357.
31 Zhang L, Ding S Y, Jiao Y L, et al. Physica B, 2008, 403, 1747.
[1] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed