Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19027-19033    https://doi.org/10.11896/cldb.19040230
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
纳米淀粉的制备、性质及应用的研究进展
刘璐婕1, 黄立新1, 张彩虹1,2, 成江1, 邓叶俊1, 王晓杰1
1 中国林业科学研究院林产化学工业研究所,生物质化学利用国家工程实验室,国家林业局林产化学工程重点开放性实验室,江苏省生物质能源与材料重点实验室,南京 210042
2 中国林业科学研究院林业新技术研究所,北京 100091
Research Progress in Preparation,Properties and Application of Nano-starch
LIU Lujie1, HUANG Lixin1, ZHANG Caihong1,2, CHENG Jiang1, DENG Yejun1, WANG Xiaojie1
1 Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
2 Research Institute of Forestry New Technology, CAF, Beijing 100091, China
下载:  全 文 ( PDF ) ( 2956KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 植物淀粉是一种无毒、高产量、低敏性、可降解再生的优良原料,但是较大的颗粒和非牛顿流体等特性限制了淀粉的应用范围。随着纳米技术的兴起,纳米尺寸下的淀粉颗粒因具有比表面积大、羟基多等良好的理化特性而受到越来越多研究者的关注,其制备方法趋于多样化,应用也不再局限于传统的食品及饲料行业,在医药及其他工业领域均有广阔的应用前景。
然而,已有的纳米淀粉制备方法存在各种不足。例如,最基础的水解法制得的纳米淀粉产量低,颗粒结构遭到破坏,粒度分布不均匀;常用的化学方法多采用有毒的化学试剂,且无法回收。针对已经存在的问题,越来越多的研究者尝试采用新的制备方法以减少对环境的污染,改善纳米淀粉的理化性质,扩大其应用范围。现多尝试用多种化学试剂与淀粉反应,通过化学试剂自身的官能团与淀粉发生反应,进行性质加成。有研究表明,天然玉米淀粉可与乙酸和乙酸酐反应制备不同取代度的乙酰化淀粉,其可用于药物环丙沙星的递送载体,通过体外实验表征递送基质的潜力。实验表明,该反应制得的纳米颗粒尺寸均匀,并且包封效率明显提高。
本文以“自上而下”和“自下而上”的思路分析对比了水解法、机械研磨法、超声波法、高压均质法、反应挤出法、辐照法和碱冷冻法、化学沉淀法、乳化交联法、静电喷雾法、自组装法和辐照交联法等淀粉纳米化制备方法,并对制得的纳米淀粉的形态结构、结晶度、热力学和流变学性质进行了分析,并对其性质和应用进行了相应的归类。已有文献表明,纳米淀粉已在包装、医药、造纸、污水处理等方面有所应用,未来可以充分利用纳米淀粉颗粒表面的众多羟基开展修饰改性和淀粉的生物相容性研究,得到更高附加值的纳米淀粉产品。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘璐婕
黄立新
张彩虹
成江
邓叶俊
王晓杰
关键词:  纳米淀粉  制备  特性  水解法    
Abstract: Plant starch is an excellent raw material for non-toxic, high-yield, low-sensitivity, degradable regeneration, but the characteristics of larger particles and non-Newtonian fluid limit the application range of starch. With the rise of nanotechnology, starch particles with nanometer size have large specific surface area, and good physical and chemical properties such as polyhydroxyl are attract more and more researchers' attention. The preparation methods tend to be diversified, and applications are no longer limited. The traditional food and feed industry has broad application prospects in the pharmaceutical and other industrial fields.
However, existing methods for preparing nano-starch have various drawbacks. For example, the nano-starch prepared by the most basic hydrolysis method has low yield, damaged particle structure, and uneven particle size distribution; commonly used chemical methods use toxic chemical reagents and cannot be recovered. In response to existing problems, more and more researchers are trying to adopt new preparation methods to reduce environmental pollution, improve the physical and chemical properties of nano-starch, and expand its application range. At present, many attempts have been made to react with starch by various chemical reagents, and the functional group of the chemical reagent reacts with the starch to carry out a property addition. Studies have shown that natural corn starch reacts with acetic acid and acetic anhydride to prepare acetylated starch with different degrees of substitution for the delivery of the drug ciprofloxacin, and the potential for delivery of the matrix is characterized by in vitro experiments. Experiments show that the nanoparticles prepared by the reaction are uniform in size and the encapsulation efficiency is significantly improved.
This paper analyzes and compares the hydrolysis method, mechanical grinding method, ultrasonic method, high pressure homogenization method, reaction extrusion method, irradiation method and alkali freezing method, chemical precipitation with the ideas of “top-down” and “bottom-up”. Starch nanofabrication preparation methods such as emulsification cross-linking method, electrostatic spray method, self-assembly method and irradiation cross-linking method, and the morphology, crystallinity, thermodynamics and rheological properties of the prepared nano-starch are analyzed. The literature shows that nano-starch has been applied in packaging, medicine, papermaking, sewage treatment, etc. In the future, it can make full use of the many hydroxyl groups on the surface of nano-starch particles to carry out modification and biocompatibility of starch, and obtain higher added value.
Key words:  nano-starch    preparation    property    hydrolysis method
                    发布日期:  2020-11-05
ZTFLH:  TS234  
基金资助: 中国林科院林业新技术所基本科研业务费专项资助(CAFYBB2018SY028);江苏省自然科学基金(BK20151067)
通讯作者:  l_x_huang@163.com   
作者简介:  刘璐婕,2018年7月毕业于山西农业大学,获得工学学士学位。现为中国林业科学院林产化学工业研究所硕士研究生。在黄立新研究员的指导下进行纳米淀粉的相关研究。
黄立新,研究员,博士研究生导师。2005年获新加坡国立大学博士学位。现任中国林业科学研究院林产化学工业研究所党委书记、副所长,中国林学会林化分会秘书长、中国林产工业协会提取物利用分会副理事长、中国化工学会干燥专业组理事、中国通用机械协会干燥行业分会理事。曾担任国际学术期刊Drying Technology(SCI源刊)的副主编。目前主要开展针对林业特色资源的活性物制备、组分分析、活性物筛选、分离、纯化、功能评价和浓缩、干燥及后续高附加值利用的研究与工艺、过程专有装备、工程化开发。先后主持国家科技支撑计划项目、863子课题项目、国家林业局948项目及省部级科技项目等10余项,成果分别获得省部级科技进步奖3项,并获得了第九届中国林业青年科技奖。先后发表科技论文100余篇,其中SCI收录20多篇,参编中英文著作6部,申请国家专利25项。在科技成果转化和推广中,潜心研究了喷雾干燥核心设备转子系统的力学模型和振动模态,提出并证明了高速机械转子系统需要三支点设计的理论依据;同时,导出了喷雾干燥容积干燥强度的经验计算公式,该理论及经验公式已经被工业生产和专业研究领域广泛引用;此外,大力响应国家倡导的“产学研结合”宗旨,为相关合作企业研发工程项目数十个,部分产品已出口至东南亚国家。
引用本文:    
刘璐婕, 黄立新, 张彩虹, 成江, 邓叶俊, 王晓杰. 纳米淀粉的制备、性质及应用的研究进展[J]. 材料导报, 2020, 34(19): 19027-19033.
LIU Lujie, HUANG Lixin, ZHANG Caihong, CHENG Jiang, DENG Yejun, WANG Xiaojie. Research Progress in Preparation,Properties and Application of Nano-starch. Materials Reports, 2020, 34(19): 19027-19033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040230  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19027
1 Cai J, Yang Y, Man J, et al. Food Chemistry,2014,145(145C),245.
2 Veelaert S, Polling M, De Wit D. Starch-Stärke,1995,47,263.
3 Yu L,Dean K,Li L. Progress in Polymer Science,2006,31(6),576.
4 Du Y F, Wang X F. Paper Science & Technology,2015(1),57(in Chinese).
杜艳芬,王兴飞.造纸科学与技术,2015(1),57.
5 Song S, Wang C, Pan Z, et al. Journal of Applied Polymer Science,2008,107(1),418.
6 Buléon A, Colonna P, Planchot V, Ball S. International Journal of Biological Macromolecules,1998,23,85.
7 Kim H Y, Park S S, Lim S T. Colloids and Surfaces B: Biointerfaces,2015,126,607.
8 Haaj S B, Thielemans W, Magnin A, et al. ACS Applied Materials & Interfaces,2014,6(11),8263.
9 Lim S T. Cereal Chemistry,2008,85(2),182.
10 Patel C M, Chakraborty M, Murthy Z V P. Advanced Powder Technology,2016,27(4),1287.
11 Haaj S B, Magnin A, Pétrier C, et al. Carbohydrate Polymers,2013,92(2),1625.
12 Liu D, Wu Q, Chen H, et al. Journal of Colloid & Interface Science,2009,339(1),117.
13 Song D, Thio Y S, Deng Y. Carbohydrate Polymers,2011,85(1),208.
14 Lamanna M, Morales N J, García N L, et al. Carbohydrate Polymers,2013,97(1),90.
15 Zhang Z, Shan H, Sun J, et al. RSC Advances,2013,3(32),13406.
16 Ma X, Jian R, Chang P R, et al. Biomacromolecules,2008,9(11),3314.
17 Gang Z, Luo Z, Xiong F. Industrial Crops & Products,2014,52(1),105.
18 Maryam Ghaeb, et al. Polymers for Advanced Technologies,2015,26(8),917.
19 Sun Q, Li G, Dai L, et al. Food Chemistry,2014,162,223.
20 Binh D, Hong P T, Duy N, et al. Radiation Physics and Chemistry,2012,81(7),906.
21 Tang H, Mitsunaga T, Kawamura Y. Carbohydrate Polymers,2006,63(4),555.
22 Le C D, Bras J, Dufresne A. Biomacromolecules,2010,11(5),1139.
23 Hélène Angellier-Coussy, Luc Choisnard, Sonia Molina-Boisseau, et al. Biomacromolecules,2004,5(4),1545.
24 Namazi H, Dadkhah A. Carbohydrate Polymers,2010,79(3),731.
25 Ma X, Jian R, Chang P R, et al. Biomacromolecules,2008,9(11),3314.
26 Déborah LeCorre, Vahanian E, Dufresne A, et al. Biomacromolecules,2012,13(1),132.
27 Zuo J Y, Knoerzer K, Mawson R, et al. Ultrasonics Sonochemistry,2009,16(4),462.
28 Moad G. Progress in Polymer Science,2011,36(2),218.
29 Zhu F. Food Hydrocolloids,2016,52,201.
30 Singh S, Singh N, Ezekiel R, et al. Carbohydrate Polymers,2011,83(4),1521.
31 Zhou J, Zhang L. Polymer Journal,2000,32(10),866.
32 Zhang Z, Shan H, Chen L, et al. European Polymer Journal,2013,49(8),2082.
33 Tan Y, Xu K, Li L, et al. ACS Applied Materials & Interfaces,2009,1(4),956.
34 Zhou G, Luo Z, Fu X. Journal of Agricultural and Food Chemistry,2014,62(32),8214.
35 Tapia-Hernández J A, Torres-Chávez P L, Ramírez-Wong B, et al. Journal of Agricultural and Food Chemistry,2015,63(19),4699.
36 Gu F, Li B Z, Xia H P, et al. Carbohydrate Polymers,2015,115,605.
37 Li X, Qin Y, Liu C, et al. Food Chemistry,2016,199(3618),356.
38 Chung H J, Liu Q. Journal of Food Science,2010,74(5),C353.
39 Lecorre D, Bras J, Dufresne A. Journal of Nanoparticle Research,2011,13(12),7193.
40 Wei B, Hu X, Li H, et al. Food Hydrocolloids,2014,36(5),369.
41 Ren L, Man J, Wang L, et al. Carbohydrate Polymers,2012,87(2),1874.
42 Duan B, Sun P, Wang X, et al. Starch,2011,63(9),528.
43 Sun Q, Gong M, Li Y, et al. Carbohydrate Polymers,2014,111,133.
44 Lecorre D. Carbohydrate Polymers,2011,86(4),1565.
45 Kim H Y, Lee J H, Kim J Y, et al. Starch-strke,2012,64(5),367.
46 Ye F, Miao M, Lu K, et al. Food Hydrocolloids,2017,67,37.
47 Jiang S, Liu C, Han Z, et al. Food Hydrocolloids,2016,52,914.
48 González A, Igarzabal C I A. Food Hydrocolloids,2015,43,777.
49 Li X, Qiu C, Ji N, et al. Carbohydrate Polymers,2015,121,155.
50 Maria C C, María C A, Adriana N M, et al. Food Hydrocolloids,2015,47(Complete),146.
51 Lee S, Jung S, Koo H, et al. Biomaterials,2017,148,1.
52 Qiu C, Chang R, Yang J, et al. Food Chemistry,2017,221,1426.
53 Santander-Ortega M J, Stauner T. Journal of Controlled Release,2010,141(1),85.
54 Mahmoudi Najafi S H, Baghaie M, Ashori A. International Journal of Biological Macromolecules,2016,87,48.
55 Cao S, Song D, Deng Y, et al. Industrial & Engineering Chemistry Research,2011,50(9),5628.
56 Nachtergaele W. Starch,1989,41(1),27.
57 Santacruz S. Carbohydrate Polymers,2014,106,166.
58 Herrera M P, Vasanthan T, Chen L. Food Hydrocolloids, DOI: 10.1016/j.foodhyd.2016.11.026.
59 Marefati A, Bertrand M, Malin Sjöö, et al. Food Hydrocolloids,2017,63,309.
60 Chen L, Sun P, Cheng Y. Starch-strke,2012,64(6),497.
61 Rayner M, Timgren A, Sj M, et al. Journal of the Science of Food & Agriculture,2012,92(9),1841.
62 Alila S, Aloulou F, Thielemans W, et al. Industrial Crops & Products,2011,33(2),350.
63 Mostafa K M, Samarkandy A R, El-Sanabary A A. Journal of Applied Polymer Science,2009,112(5),9.
64 Howard B V. Nutrition Metabolism & Cardiovascular Diseases Nmcd,2007,17(3),171.
65 Zhao L T. Research on the preparation and application of ginkgo starch based fat substitute. Master's Thesis, Nanjing Forestry University, China,2015(in Chinese).
赵丽婷.银杏淀粉基脂肪替代品的制备及应用研究.硕士学位论文,南京林业大学,2015.
66 Sorrentino A, Gorrasi G, Vittoria V. Trends in Food Science & Technology,2007,18(2),84.
67 Hélène Angellier, Molina-Boisseau S, Dufresne A. Macromolecules,2005,38(22),9161.
68 Zou J, Zhang F, Huang J, et al. Carbohydrate Polymers,2011,85(4),824.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[3] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[4] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[5] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[6] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[7] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[8] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[9] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[10] 金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
[11] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[12] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[13] 张承承. 复合材料非线性渐进损伤分析模型的建立及工程应用[J]. 材料导报, 2020, 34(18): 18030-18034.
[14] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[15] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed