Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 82-86    https://doi.org/10.11896/j.issn.1005-023X.2017.010.017
  材料研究 |
静磁场深冷处理对铝黄铜组织和性能的影响*
王宏明,储强泽,李桂荣,程江峰,朱弋
江苏大学材料科学与工程学院, 镇江 212013
Effect of Simultaneous Magnetic Field and Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of Aluminum-brass
WANG Hongming, CHU Qiangze, LI Guirong, CHENG Jiangfeng, ZHU Yi
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 1248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铝黄铜进行静磁场条件下不同时间的深冷处理,并与初始试样和同时间单独深冷试样进行对比分析,结果表明静磁场能够进一步提高铝黄铜的强韧性。在T=24 h时,MDCT试样的强韧性最好,其抗拉强度为602.5 MPa,延伸率为7.2%,较初始样分别提高了6.4%和53.2%,较DCT24试样分别提高3.1%和28.6%。分析原因在于从深冷回复到室温过程中铝黄铜发生了回复再结晶,起到了细晶强化作用;同时基于磁致塑性效应,位错运动灵活性增加,有助于提高延伸率和塑性变形能力。另外,静磁场在深冷过程中起到抑制铝黄铜α→β相转化和促进γ相转变的作用,使得MDCT试样平均晶粒尺寸较DCT试样大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宏明
储强泽
李桂荣
程江峰
朱弋
关键词:  静磁场  深冷  铝黄铜  晶粒转动  微观组织  力学性能    
Abstract: The effect of simultaneous magnetic field and deep cryogenic treatment on the structure and mechanical properties of aluminum brass subjected to deep cryogenic treatment was investigated. The results show that the static magnetic field can further improve the strength and toughness of the aluminum-brass. When T=24 h, the test samples named MDCT (magnetized-deep cryogenically treated samples ) have the best tensile strength (602.5 MPa) and elongation (7.2%) which increase by 6.4% and 53.2% compared with the initial sample, and increase by 3.1% and 28.6% respectively compared with DCT (deep cryogenically treated samples). The reason for the property improvement is that during the reversion of test sample from deep cryogenic condition to room temperature, the dynamic recrystallization occurs, which play an important role in grain refinement strengthening effect. At the same time, based on the magnetoplasticity effect, it is easier for the dislocation to move which is beneficial to improve the capability of elongation and plastic deformation. In addition, under the condition of static magnetic field, the conversion rate of α-phase to β-phase in Al-brass has been reduced, and the conversion rate of γ-phase increased. Besides, the average grain size of MDCT is bigger than DCT.
Key words:  static magnetic field    deep cryogenic    aluminum brass    grain rotation    microstructure    mechanical property
                    发布日期:  2018-05-08
ZTFLH:  TG135.1  
基金资助: *国家自然科学基金(51371091;51174099)
作者简介:  王宏明:男,1974年生,博士,副教授,主要从事先进金属材料方面的研究E-mail:ujswang@sina.com
引用本文:    
王宏明,储强泽,李桂荣,程江峰,朱弋. 静磁场深冷处理对铝黄铜组织和性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 82-86.
WANG Hongming, CHU Qiangze, LI Guirong, CHENG Jiangfeng, ZHU Yi. Effect of Simultaneous Magnetic Field and Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of Aluminum-brass. Materials Reports, 2017, 31(10): 82-86.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.017  或          http://www.mater-rep.com/CN/Y2017/V31/I10/82
1 Akhbarizadeh A, Shafyei A, Golozar M A. Effects of cryogenic treatment on wear behavior of D6 tool steel [J].Mater Des,2009,30(6):3259.
2 Gao Y,Nakata K, Nagatsuka K, et al. Microstructures and mecha-nical properties of friction stir welded brass/steel dissimilar lap joints at various welding speeds [J].Mater Des,2016,90(15):1018.
3 Lu Yue, Ma Ru, Wang Yinong. Texture evolution and recrystallization behaviors of Cu-Ag alloys subjected tocryogenic rolling [J]. Trans Nonferr Met Soc China,2015,25(9):2948.
4 李桂荣,王宏明. 材料电磁过程[M]. 镇江:江苏大学出版社,2014.
5 Amin Akhbarizadeh, Kamran Amini, Sirus Javadpour. Effect of simultaneous magnetic field and deep cryogenic heat treatment on the microstructure of 1.2080 tool steel [J]. Mater Des,2012,35(15):484.
6 Amin Akhbarizadeh, Kamran Amini, Sirus Javadpour. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel [J]. Mater Des,2012,41(12):114.
7 Huang Qicheng, Zhong Yunbo, Ren Zhongming, et al. The study of copper deposit surface morphology and texture under the strong magnetic field [J]. Rare Metal Mater Eng,2006,35(6):381(in Chinese).
黄琦晟,钟云波,任忠鸣,等. 强磁场下铜电沉积层表面形貌及织构的研究 [J].稀有金属材料与工程,2006,35(6):381.
8 Teng Jie, Liu Fang, Jiang Yong, et al. Investigation on deep cryogenic treatment of copper [J].Heat Treat Met,2008,33(4):49(in Chinese).
滕杰,刘芳,姜勇,等.紫铜的深冷处理 [J].金属热处理,2008,33(4):49.
9 Chen Ding, Li Wenxian. The grain rotation of aluminum and aluminum alloy after cryogenic treatment [J]. J Central South University of Technology,2000,31(6):544(in Chinese).
陈鼎,黎文献.深冷处理下铝和铝合金的晶粒转动 [J].中南工业大学学报,2000,31(6):544.
10 Li Guirong,Li Yueming,Wang Fangfang,et al. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment [J]. Chinese J Nonferrous Met,2015,25(2):330(in Chinese).
李桂荣,李月明,王芳芳,等.脉冲磁场处理对TC4钛合金显微组织及力学性能的影响 [J].中国有色金属学报,2015,25(2):330.
11 宛德福,马兴隆.磁性物理 [M].成都:电子工业出版社,1999.
12 Song W L, Lee C H, Choi B. Sliding wear behavior of magnetorheological fluid for brass with and without magnetic field [J]. Trans Nonferrous Met Soc China,2013,23(2):400.
13 Huang Yunzhan,Jin Fangwei. The influence of cryogenic treatment on the microstructure and mechanical properties of copper alloy[J]. Heat Treat Met,2001,26(7):5(in Chinese).
黄云战,晋芳伟.深冷处理对铜合金组织和性能的影响[J].金属热处理,2001,26(7):5.
14 Brodovoy A V, Brodovoy V A, Skryshevsky V A. Influence of magnetic field on structural defects in Si and GaAs [J]. Appl Surf Sci,2004,225:170.
15 Wang Hongming,Li Peisi,Zhen Rui,et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites [J]. Acta Phys Sin,2015,64(8):87(in Chinese).
王宏明,李沛思,郑瑞,等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制 [J].物理学报,2015,64(8):87.
16 Golovin Y I. Magnetoplastic effect in solid [J]. Phys Solid State,2004,46(5):460.
17 Alshits V I, Darinskaya E V,Kazakova O L,et al.Magnetoplastic effect in nonmagnetic crystals [J].Mater Sci Eng A,1997,234-236:61.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed