Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23080148-6    https://doi.org/10.11896/cldb.23080148
  先进有色金属材料加工及性能调控 |
Zr含量对5083铝合金铸轧板组织和性能的影响
刘柱1, 孙玉崇1, 侯忠霖1,2,*, 徐振1,*, 吕哲1, 陈庆强3
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 辽宁科技大学冶金设备与过程控制省级重点实验室,辽宁 鞍山 114051
3 山东建筑大学机电工程学院,济南 250101
Effect of Zr Content on Microstructure and Properties of 5083 Aluminum Alloy Cast-rolling Plate
LIU Zhu1, SUN Yuchong1, HOU Zhonglin1,2,*, XU Zhen1,*, LYU Zhe1, CHEN Qingqiang3
1 College of Materials and Metallurgy, Liaoning University of Science and Technology, Anshan 114051, Liaoning, China
2 Provincial Key Laboratory of Metallurgical Equipment and Process Control, Liaoning University of Science and Technology, Anshan 114051, Liaoning, China
3 School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
下载:  全 文 ( PDF ) ( 31049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用立式双辊铸轧机制备了Zr含量为0%~0.25%(质量分数,下同)的5083-xZr铝合金铸轧板。采用光学显微镜和扫描电镜对铸轧板边部与心部的组织进行观察分析。利用电化学工作站和电子万能试验机对铸轧板的耐腐蚀性和室温拉伸性能进行检测,系统研究了Zr含量对5083铝合金铸轧板的微观组织及性能的影响。研究结果表明,Zr对5083铝合金铸轧板的晶粒有明显的细化作用,随着Zr含量的增加,晶粒的细化作用增强,边部晶界上的析出相增多,心部粗大的共晶相得到改善,铸轧板的力学性能提升。在四种成分的合金中,当Zr含量为0.25%时,合金的耐腐蚀性较佳,自腐蚀电位为-654.5 mV,腐蚀电流衰减到1.37×10-7A/cm2。此时,板材的边部晶粒尺寸为46.87 μm,心部晶粒尺寸为32.55 μm,铸轧板的抗拉强度、屈服强度和延伸率分别为137.12 MPa、98.37 MPa和10.21%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘柱
孙玉崇
侯忠霖
徐振
吕哲
陈庆强
关键词:  Zr元素  微合金化  铸轧板  组织  性能    
Abstract: In this work, 5083-xZr aluminum alloy cast-rolling plates with Zr content from 0wt% to 0.25wt% were prepared by vertical twin-roll casting mill. The microstructure of the edge and center of the cast-rolled sheet was observed and analyzed by optical microscope and scanning electron microscope. The corrosion resistance and room temperature tensile properties of the cast-rolling plate were tested by electrochemical workstation and electronic universal testing machine. The effects of Zr content on the microstructure and properties of 5083 aluminum alloy cast-rolled sheet were systematically studied. The results show that Zr has a significant refining effect on the grain of 5083 aluminum alloy cast-rolled sheet. With the increase of Zr content, the grain refinement effect is enhanced, the precipitated phase on the edge grain boundary is increased, the coarse eutectic phase in the center is improved, and the mechanical properties of the cast-rolled sheet are improved. When the Zr content is 0.25wt%, the corrosion resistance is better, the self-corrosion potential is -654.5 mV, and the corrosion current decays to 1.37×10-7A/cm2. At this time, the grain size of the edge of the plate is 46.87 μm, and the grain size of the center is 32.55 μm. The tensile strength, yield strength and elongation of the cast-rolling plate are 137.12 MPa, 98.37 MPa and 10.21%, respectively.
Key words:  Zr element    micro-alloy    cast-rolling plate    microstructure    property
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG113  
基金资助: 国家自然科学基金(52104377); 冶金设备及过程控制重点实验室(科技厅)(2023KFKT-03)
通讯作者:  * 侯忠霖,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。2004年大连理工大学材料成型及控制工程专业本科毕业,2007年大连理工大学材料加工工程专业硕士毕业,博士毕业于大连理工大学材料连接技术专业,然后到辽宁科技大学工作至今。目前主要从事激光-电弧复合焊接技术、计算机模拟技术等方面的研究工作。发表论文20余篇,包括Journal of Iron and Steel Research International、Journal of Manufacturing Processes、Materials Transactions等。dlut_kyo@sina.com.cn
徐振,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。2003年东北大学材料成型及控制工程专业本科毕业,2012年东北大学材料加工工程专业硕士毕业,2015年博士毕业于东北大学材料加工工程专业,然后到辽宁科技大学工作至今。目前主要从事铝合金新材料强韧化体系设计、铝合金铸轧工艺研究等方面的工作。发表论文30余篇,包括Journal of Alloys and Compounds、Materials Characterization、Rare Metal Materials and Engineering等。ustlxuzhen@126.com   
作者简介:  刘柱,河南省鹏辉电源有限公司助理工程师。 2020年郑州航空工业管理学院工业工程专业本科毕业,2023年辽宁科技大学材料工程专业硕士毕业,目前从事铝合金铸轧等相关的研究工作。
引用本文:    
刘柱, 孙玉崇, 侯忠霖, 徐振, 吕哲, 陈庆强. Zr含量对5083铝合金铸轧板组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080148-6.
LIU Zhu, SUN Yuchong, HOU Zhonglin, XU Zhen, LYU Zhe, CHEN Qingqiang. Effect of Zr Content on Microstructure and Properties of 5083 Aluminum Alloy Cast-rolling Plate. Materials Reports, 2024, 38(15): 23080148-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080148  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23080148
1 Lukas S, Matheus A. T, Ramona T, et al. Progress in Materials Science, 2021, 124, 100873.
2 Wang Y X, Wu G H, Zhang L, et al. Materials Science & Engineering A, 2023, 880, 145366.
3 Zuo Z D, Liu X B, Liu J B, et al. Materials Reports, 2024, 38(8), 217(in Chinese).
左志东, 刘先斌, 刘吉波, 等. 材料导报, 2024, 38(8), 217.
4 Guo C, Chen Y F, Zhang H T, et al. Journal of Alloys and Compounds, 2023, 939, 168770.
5 Surajit S, Ranjan J S, Sumeet M. Acta Materialia, 2023, 254, 119014.
6 Kwangtae S, Michael E K, Tae-Kyu L, et al. Materials & Design, 2022, 224, 111336.
7 Fang H J, Liu H, Sun J, et al. Materials Reports, 2023, 37(21), 211(in Chinese).
房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211.
8 Sun Y C, Zhang B, Xu Z, et al. Journal of Alloys and Compounds, 2022, 918, 165618.
9 Kang J, Zhao X L, Zhang Y Q, et al. Journal of Materials Science & Technology, 2022, 107, 183.
10 Tian S Y, Luan S, Xu Z, et al. Journal of Materials Engineering and Performance, 2022, 32(11), 4911.
11 HE C, Li Y, Li J D, et al. Materials Science & Engineering A, 2019, 766, 138328.
12 Shi C, Fan G F, Mao X Q, et al. Materials, 2020, 13(9), 2019.
13 Sun Y W, Johnson D R, Trumble K P. Materials Science & Engineering A, 2017, 700, 359.
14 Jaradeh M M, Carlberg T. Journal of Materials Science & Technology, 2011, 27(7), 615.
15 Shen H, Shi J C, Mu Y L, et al. Rare Metal Materials and Engineering, 2019, 48(1), 300(in Chinese).
申华, 史建超, 穆永亮, 等. 稀有金属材料与工程, 2019, 48(1), 300.
16 Zhu Q F, Zhu C, Chen Q Q, et al. Materials Science and Technology, 2017, 25(1), 30(in Chinese).
朱庆丰, 朱成, 陈庆强, 等. 材料科学与工艺, 2017, 25(1), 30.
17 Xu Z, Zhang X Y, Wang H B, et al. Materials Characterization, 2020, 168, 110536.
18 She X W, Jiang X Q, Zhang R H, et al. Journal of Alloys and Compounds, 2020, 825, 153960.
19 Huang H L. Effect of Zr and Hf on microstructure and high temperature mechanical properties of Al-Si-Mg cast alloy. Master’s Thesis, Chongqing University, China, 2018 (in Chinese).
黄惠兰. Zr和Hf元素对Al-Si-Mg铸造合金微观组织和高温力学性能的影响. 硕士学位论文, 重庆大学, 2018.
20 Pan S W. Precipitation behavior and strengthening mechanism of nano-dispersed phase in zirconium-containing aluminum alloy. Master’s Thesis, University of Science and Technology Beijing, 2022 (in Chinese).
潘士伟. 纳米弥散相在含锆铝合金中的析出行为与强化机制. 硕士学位论文, 北京科技大学, 2022.
21 Alexander L T D, Greer A L. Philosophical Magazine, 2007, 84(28), 3071.
22 Liu S F, Gao W B, Gu X Y, et al. Hot Working Technology, 2024, 53(12), 93(in Chinese).
刘世凡, 高文斌, 顾小燕, 等. 热加工工艺, 2024, 53(12), 93.
23 Shi J C. The effect of Zn element on the microstructure, mechanical properties and corrosion properties of 5083 alloy. Master’s Thesis, Northeastern University, China, 2018 (in Chinese).
史建超. Zn元素对5083合金显微组织力学性能和腐蚀性能影响的研究. 硕士学位论文, 东北大学, 2018.
24 Zhou L, Hyer H, Chang J F, et al. Materials Science and Engineering:A, 2021, 823, 345.
[1] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[2] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[5] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[6] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[9] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[10] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[11] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[14] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[15] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed