Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22030122-9    https://doi.org/10.11896/cldb.22030122
  无机非金属及其复合材料 |
Cu离子分子筛催化材料在去除NOx方面应用的研究进展
孟令钦1, 崔素萍1,*, 甘延玲2, 王亚丽1, 马晓宇1
1 北京工业大学材料与制造学部,北京 100124
2 中山大学环境科学与工程学院,广州 510275
Research Progress on Application of Cu Ion Zeolite Catalyst for NOx Removal
MENG Lingqin1, CUI Suping1,*, GAN Yanling2, WANG Yali1, MA Xiaoyu1
1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2 School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
下载:  全 文 ( PDF ) ( 3504KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 控制大气中氮氧化物的排放对环境和人体健康有着至关重要的作用,应用于NOx去除的技术有很多,其中选择性催化还原(NH3-SCR)技术是去除NOx极有效的技术之一,利用CO去除NOx为烟气脱硝(CO-SCR)提供了一种简单且低成本的技术,直接催化分解NOx被认为是去除NOx最理想、最环保的技术。Cu离子分子筛作为去除NOx的高效催化剂,具有宽温度窗口和良好的水热稳定性。本文综述了Cu交换分子筛在去除NO领域的研究进展,讨论了Cu离子分子筛在NH3-SCR、CO-SCR以及直接催化分解NO中的应用,着重总结了Cu离子参与去除NO的反应机理,归纳了分子筛中Cu活性位点对脱硝性能的影响,还讨论了铜离子分子筛的抗H2O和SO2中毒性能,展望了Cu离子分子筛未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟令钦
崔素萍
甘延玲
王亚丽
马晓宇
关键词:  Cu离子分子筛  NOx去除  NH3-SCR  NO直接分解  CO-SCR    
Abstract: It is crucial to control NOx emissions into the atmosphere for the environment and health. Many technologies are available for NOx removal, selective catalytic reduction(SCR) is one of the most effective technologies for NOx removal. The reduction of NO by CO offers a simple and low-cost technology for flue gas denitrification (CO-SCR), and direct decomposition of NO is regarded as the most ideal and environmentally friendly technology for the removal of NOx. As an efficient catalyst for NOx removal, Cu ion zeolite catalysts have wide temperature windows and good hydrothermal stability. In this review, the research progress of Cu ion zeolite catalysts in NOx removal is studied. The NH3-SCR, CO-SCR, and direct catalyst decomposition of NO on the Cu ion zeolite catalysts are discussed, involving the reaction mechanism of Cu ions zeolite catalysts as well as the effect Cu active sites. In addition, the poison-resistant properties of Cu ion zeolite catalysts to H2O and SO2 are also summarized. And the future development of Cu ion zeolite has been discussed.
Key words:  Cu ion zeolite catalyst    NOx removal    NH3-SCR    NO direct decomposition    CO-SCR
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  X511  
基金资助: 国家自然科学基金(52072009);国家自然科学基金创新研究群体项目(51621003)
通讯作者:  *崔素萍,北京工业大学材料与制造学部教授、博士、博士研究生导师。目前主要从事高性能水泥、生态建筑材料、材料LCA、环境材料等方面的研究工作。成果获得国家科技进步二等奖2项、省部级科技奖励9项、国家级教学成果二等奖1项、北京市教学成果奖2项,其中第一完成人获国家科技进步二等奖1项、省部级科技进步一等奖3项。专/译著7部,发表学术论文160多篇,授权发明专利80多件,参与制定标准5项。cuisuping@bjut.edu.cn   
作者简介:  孟令钦,2020年6月于北京工业大学获得工学学士学位。现为北京工业大学材料与制造学部硕士研究生,在崔素萍教授的指导下进行研究。目前主要研究领域为烟气脱硝催化材料。
引用本文:    
孟令钦, 崔素萍, 甘延玲, 王亚丽, 马晓宇. Cu离子分子筛催化材料在去除NOx方面应用的研究进展[J]. 材料导报, 2024, 38(2): 22030122-9.
MENG Lingqin, CUI Suping, GAN Yanling, WANG Yali, MA Xiaoyu. Research Progress on Application of Cu Ion Zeolite Catalyst for NOx Removal. Materials Reports, 2024, 38(2): 22030122-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030122  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22030122
1 Xue Y F, Yan J, Zhou Z. Environmental Engineering, 2014, 32(S1), 947(in Chinese).
薛亦峰, 闫静, 周震. 环境工程, 2014, 32(S1), 947.
2 Thirupathi B, Panagiotis G. Current Opinion in Chemical Engineering, 2016, 13, 133.
3 He H, Weng D, Zi X Y. Environmental Science, 2007(6), 1169(in Chinese).
贺泓, 翁端, 资新运. 环境科学, 2007(6), 1169.
4 Denise L. Mauzerall, Babar S, et al. Atmospheric Environment, 2005, 39(16), 2851.
5 Hu X, Wang X, Liu Q Z, et al. Environmental Monitoring in China, 2020, 36(5), 54(in Chinese).
胡雪, 王鑫, 刘启贞, 等. 中国环境监测, 2020, 36(5), 54.
6 Zhou K, Wu J X, Fan J, et al. Acta Scientiae Circumstantiae, 2021, 41(5), 1996(in Chinese).
周侃, 伍健雄, 樊杰, 等. 环境科学学报, 2021, 41(5), 1996.
7 Wang X, Li L, Sun J, et al. Industrial Catalysis, 2019, 27(2), 1(in Chinese).
王修文, 李露露, 孙敬方, 等. 工业催化, 2019, 27(2), 1.
8 Gan Y. Study on Cu/Al2O3-SiO2 porous material and denitrification of cement kiln flue gas. Ph. D. Thesis, Beijing University of Technology, China, 2020 (in Chinese).
甘延玲. 铜离子Al2O3-SiO2多孔材料及水泥窑烟气脱硝. 博士学位论文, 北京工业大学, 2020.
9 Ministry of Ecology and Environment of the People’s Republic of China. Report on the State of the Ecology and Environment in China 2020(in Chinese).
中华人民共和国生态环境部. 2020年中国生态环境统计年报. 中华人民共和国生态环境部. 2020
10 Wang D, Li F, Wei X, et al. Petroleum Processing and Petrochemicals, 2017, 48(10), 28(in Chinese).
王迪, 李福超, 魏晓丽, 等. 石油炼制与化工, 2017, 48(10), 28.
11 Lin X, Zhang J, Yin Y. Energy Environmental Protection, 2014, 28(1), 1(in Chinese).
林晓芬, 张军, 尹艳山. 能源环境保护, 2014, 28(1), 1.
12 Guo Y, Mu B, Liu P, et al. Atmospheric Pollution Research, 2020, 11(10), 1738.
13 Zhang T, Deng L, Chen J, et al. Environmental Protection and Technology, 2021, 27(6), 61(in Chinese).
张涛, 邓立锋, 陈嘉俊, 等. 环保科技, 2021, 27(6), 61.
14 Zhang X. Synthesis of manganese based catalyst for desulfurization and denitrification from low-temperature flue gas. Master’s Thesis, University of Chinese Academy of Sciences, China, 2020 (in Chinese).
张霄玲. 低温锰系催化剂制备及烟气脱硫脱硝性能研究. 硕士学位论文, 中国科学院大学(中国科学院过程工程研究所), 2020.
15 Zhao R. Investigation on one-pot synthesis of Fe/Cu-SSZ-13 catalysts and their catalytic performance for NH3-SCR. Master’s Thesis, Zhejiang University, China, 2017 (in Chinese).
赵茹. Fe/Cu-SSZ-13催化剂一步法合成及其NH3-SCR催化性能的研究. 硕士学位论文, 浙江大学, 2017.
16 Fang D, Li D, He F. Computational Materrials Science, 2019, 160, 374.
17 Lee H, Song I, Jeon S W, et al. Journal of Physical Chemistry Letters, 2021, 12(12), 3210.
18 Du J, Wang J, Shi X. Catalysts, 2020, 10(12), 1375.
19 Xie L, Fu D, Liu K. Catalysis Science & Technology, 2014, 4(4), 1104.
20 Busca G, Lietti L, Ramis G. Applied Catalysis B-Environmental, 1998, 18(1-2), 1.
21 Zeldovich J. Acta Physicochimica U.S.S.R, 1946, 21, 577.
22 Ni X, Wang T, Jiang B. Cement, 2021(2), 61(in Chinese).
倪旭光, 王涛, 蒋宝庆. 水泥, 2021(2), 61.
23 Cui S, Ye W, Lan M. China Cement, 2010(5), 55(in Chinese).
崔素萍, 叶文娟, 兰明章. 中国水泥, 2010(5), 55.
24 Tauster S, Murrell L. Journal of Catalysis, 1976, 41(1), 192.
25 Shelef M, Graham G W. Catalysis Reviews, 1994, 21(3), 7.
26 Stegenga S, Soest R, Kapteijn F, et al. Applied Catalysis B: Environmental, 1993, 2(4), 257.
27 Wang H, Li X, Li L, et al. Fine Chemicals, 2021, 38(12), 2523(in Chinese).
王焕然, 李先春, 李丽, 等. 精细化工, 2021, 38(12), 2523.
28 Jiang H, Zhao C. Applied Chemical Industry, 2015(S1), 205(in Chinese).
姜慧超, 赵朝成. 应用化工, 2015(S1), 205.
29 Zhang J, Liang J, Peng H. Applied Catalysis B: Environmental, 2021, 292, 120163.
30 Chen Y Cheng D, Chen F, et al. Progress in Chemistry, 2014, 26(Z1), 248(in Chinese).
陈艳平, 程党国, 陈丰秋, 等. 化学进展, 2014, 26(Z1), 248.
31 Liu M. Investigation on direct decomposition of NO over Cu-ZSM-5 zeolite catalysts. Master’s Thesis, Tianjin University, China, 2018 (in Chinese).
刘梦柯. Cu-ZSM-5分子筛催化剂直接催化分解NO的研究. 硕士学位论文, 天津大学, 2018.
32 Qi K. Performance optimization and mechanism research on Cu-based SCR catalysts. Ph. D. Thesis, Wuhan University of Technology, China, 2020 (in Chinese).
齐凯. Cu基SCR脱硝催化剂的性能优化与机理研究. 博士学位论文, 武汉理工大学, 2020.
33 Chen L, Si Z, Wu X, et al. Journal of Rare Earths, 2014, 32(10), 907.
34 Liu F, Yu Y, Hong H. Cheminform, 2015, 45(36), 8445.
35 Liu S, Chai Y, Guan N, et al. Chemical Journal of Chinese Universities, 2021, 42(1), 268(in Chinese).
刘珊珊, 柴玉超, 关乃佳, 等. 高等学校化学学报, 2021, 42(1), 268.
36 Jin X. Selective catalytic reduction of NO on transition metal oxide surfaces: a first-principles study. Ph. D. Thesis, Jilin University, China, 2020 (in Chinese).
金鑫. 过渡金属氧化物表面上选择性催化还原NO反应的第一性原理研究. 博士学位论文, 吉林大学, 2020.
37 Wang C. Chemistry and Adhesion, 2010, 32(4), 76(in Chinese).
王春蓉. 化学与粘合, 2010, 32(4), 76.
38 Iwamoto M, Yokoo S, Sakai K, et al. Journal of the Chemical Society, Faraday Transactions, 1981, 77, 1629.
39 Iwamoto M, Yahiro H, Tanda K. Journal of Physical Chemistry, 1991, 95(9), 3727.
40 Shan Y, Du J, Zhang Y, et al. National Science Review, 2021, 8(10), 139.
41 Brandenberger S, Krocher O, Tissler A, et al. Catalysis Reviews-Science and Engineering, 2008, 50(4), 492.
42 Tao Z, Jian L, Wang D. Applied Catalysis B:Environmental, 2014, 148-149, 520.
43 Liu H. The study on the activity of transition metal (Fe, Cu) modified beta catalysts in NH3-SCR reaction. Ph. D. Thesis, Tianjin University, China, 2014 (in Chinese).
刘海燕. 过渡金属(Fe、Cu)改性Beta分子筛催化剂在NH3-SCR反应中的应用研究. 博士学位论文, 天津大学, 2014.
44 Katariina R, Teuvo M, Mari L, et al. Catalysis Today, 2005, 100(3), 217.
45 Kwak J, Tonkyn R, Kim D, et al. Journal of Catalysis, 2010, 275(2), 187.
46 Fickel D W, D’Addio E, Lauterbach J A. Applied Catalysis B:Environmental, 2010, 102(3-4), 441.
47 Ming S, Chen Z, Fan C, Pang L, et al. Applied Catalysis A:General, 2018, 559, 47.
48 Shan Y, Shan W, Shi X, et al. Applied Catalysis B:Environmental, 2020, 264. 103.
49 Ipek B, Wulfers M, Kim H, et al. ACS Catalysis, 2017, 7(7), 4291.
50 Li Y, Hall W. Journal of Catalysis, 1991, 129(1), 202.
51 Sun Q, Wang Z, Wang D. Catalysis Science & Technology, 2018, 8(18), 4563.
52 Masaaki H, Hideaki H. Comptes Rendus Chimie, 2016, 19(10), 1254.
53 Kim D, Szanyi J, Peden C. Journal of Catalysis, 2010, 275(2), 187.
54 Moliner M, Franch C, Palomares E, et al. Chemical Communications, 2012, 48(66), 8264.
55 Liu J, Li X, Zhao Q. Applied Catalysis B:Environmental, 2017(200), 297.
56 Wen B. Study on catalytic materials used for simultaneous removal of NOx, SOx, CO from FCC fuel gas and on related mechanism. Ph. D. Thesis, Sinopec Pesearch Institure of Petroleum Processing, China, 2000 (in Chinese).
温斌. 同时脱除FCC烟气中NOx、SOx和CO的催化材料及其作用原理的研究. 博士学位论文, 石油化工科学研究院, 2000.
57 Panahi P. Environmental Progress & Sustainable Energy, 2017, 36(4), 1049.
58 Worch D, Suprun W, Gläser R. Catalysis Today, 2010, 176(1), 309
59 Tarach K, Jabłońska K, Pyra K, et al. Applied Catalysis B: Environmental, 2021, 284, 119752.
60 Korhonen S, Fickel, Lobo R, et al. Chemical Communications, 2011, 47(2), 800.
61 Deka U, Juhin A, Eilertsen E A, et al. American Chemical Society, 2012, 116(7), 4809.
62 Zhao H, Li H, Li X, et al. Catalysis Today, 2017, 297, 84.
63 Vennestrøm P. ACS Catalysis , 2013, 9(3), 2158.
64 Liu J, Tang X, Xing C, et al. Journal of Solid State Chemistry, 2021, 296, 122028.
65 Kwak J, Zhu H, Lee J, et al. Chemical Communications, 2012, 48(39), 4758.
66 Borfecchia E, Lomachenko K, Giordanino F, et al. Chemical Science, 2014, 6(1), 548.
67 Giordanino F, Vennestrøm P, Lundegaard L, et al. Dalton Transactions, 2013, 42(35), 12741.
68 Gao F, Washton N, Wang Y, et al. Journal of Catalysis, 2015, 331, 25.
69 Xu S. Study on denitration performance of FCC flue gas by copper-based oxide catalyst. Master’s Thesis, Beijing University of Chemical Techno-logy, China, 2018 (in Chinese).
徐胜美. 铜基氧化物催化剂FCC烟气脱硝性能研究. 硕士学位论文, 北京化工大学, 2018.
70 Panayotov D, Dimitrov L, Khristova M, et al. Applied Catalysis B: Environmental, 1995, 6(1), 61.
71 Cheng X, Su D, Wang Z, et al. International Journal of Hydrogen Energy, 2018, 43(48), 21969.
72 Patel A, Rufford T, Rudolph V, et al. Catalysis Today, 2011, 166(1), 188.
73 Kacimi M, Ziyad M, Liotta L. Catalysis Today, 2015, 241, 151.
74 Patel A, Shukla P, Rufford T, et al. Chemical Engineering Journal, 2014, 255, 437.
75 Xu J, Qin Y, Wang H. New Journal of Chemistry, 2020, 44(3), 817.
76 Li J, Luo G, Chu Y. Chemical Engineering Journal, 2012(184), 168.
77 Wang D, Huang B, Long H. Journal of Donghua University(English Edition), 2020, 37(05), 382.
78 Morpurgo, Simone. Journal of Catalysis, 2018, 366, 189.
79 Wang X, Xiao Y, Qiao X. Energy & Fuels, 2020, 34(9), 11341.
80 Lee D. Korean Journal of Chemical Engineering, 2004(21), 611.
81 Kustova M, Rasmussen S, Kustov A, et al. Applied Catalysis B:Environmental, 2006, 67(1), 60.
82 Ohata Y, Nishitoba T, Yokoi T, et al. Bulletin of the Chemical Society of Japan, 2019, 92(12), 1935.
83 Guo Q, Fan F, Michel Ligthart D, et al. ChemCatChem, 2014, 6(2), 634.
84 Wichterlova B, Dedecek J, Vondrova J. The Journal of Physical Chemistry, 1995, 99(4), 1065.
85 Chang Y. Preparation, characterization of the catalyst for decomposition of the high concentration NO and its activity evaluation. Master’s Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
常意川. 高浓度NO分解催化剂制备表征及其活性评价. 硕士学位论文, 武汉理工大学, 2018.
86 Zhang J. Research on direct decomposition of NO over ion-doping Cu-ZSM-5 zeolite catalyst. Master’s Thesis, Nanjing University of Technology, China, 2008 (in Chinese).
张婧婧. 离子掺杂Cu-ZSM-5分子筛催化剂直接分解NO的实验研究. 硕士学位论文, 南京理工大学, 2008.
87 Spuhler P, Holthausen M C. Chemistry—A European Journal, 2002, 8(9), 2099.
88 Rejmak P. Journal of Physical Chemistry C, 2008, 112(46), 17998.
89 Kuterasiński Ł, Podobiński J, Rutkowska-Zbik D, et al. Molecules, 2019, 24(23), 4250.
90 Li X, Shi C, Chen B. Microporous and Mesoporous Materials, 2016, 236, 211.
91 González J, Villa A. Catalysis Letters, 2021, 151(10), 3011.
92 Wang A, Arora P, Bernin D, et al. Applied Catalysis B:Environmental, 2019, 246, 242.
93 Kobayashi M, Kuma R, Morita A. Catalysis Letters, 2006, 112, 37.
94 Kobayashi M, Kuma R, Masaki S, et al. Applied Catalysis B:Environmental, 2005, 60, 173.
95 Gao F, Tang X, Yi H, et al. Chemical Engineering Journal, 2017, 317(1), 20.
[1] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[2] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[3] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed