Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22030208-6    https://doi.org/10.11896/cldb.22030208
  金属与金属基复合材料 |
酒石酸钾钠和EDTA对青铜表面锈蚀的清洗效果对比研究
毕江元1,2, 宋述鹏1,2,*, 丁兴1,2, 柯德庆2, 周和荣2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉430081
2 武汉科技大学材料与冶金学院,武汉430081
Comparative Study on the Cleaning Effect of Potassium Sodium Tartrate and EDTA on Surface Corrosion of Bronze
BI Jiangyuan1,2, SONG Shupeng1,2,*, DING Xing1,2, KE Deqing2, ZHOU Herong2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 28727KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用不同浓度的乙二胺四乙酸(EDTA)和酒石酸钾钠(PST)溶液对青铜合金表面锈蚀进行清洗实验,并对清洗效果进行探讨和评价。电化学测试结果表明,相同浓度的EDTA溶液对基体的腐蚀速率小于酒石酸钾钠,两者的腐蚀速率均随着溶液浓度的增大而增大;SEM和XRD结果表明,168 h酒石酸钾钠完全有效清除绿色有害锈层,试样表面露出了Cu2O和SnO2锈层,EDTA部分有效清除绿色锈层,两种溶液清洗后试样表面均无新物质生成。EDTA和酒石酸钾钠均为螯合剂,两者螯合配位形式和成环结构不同,造成对Cu2+吸附能力不同,导致两者的实际清洗效果存在差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕江元
宋述鹏
丁兴
柯德庆
周和荣
关键词:  乙二胺四乙酸(EDTA)  酒石酸钾钠  青铜锈蚀  腐蚀速率  螯合剂    
Abstract: In order to analyze the rust removal effect of simulated bronze corrosion and discuss its mechanism, different concentrations of EDTA and potassium sodium tartrate were investigated. Electrochemical test results show that the corrosion rates of both increases with the increase of solution concentration, and EDTA solution with the same concentration are lower than that of potassium sodium tartrate. SEM and XRD results show that 168 h potassium sodium tartrate effectively removes the green harmful rust layer, and the surface of the sample reveals the Cu2O and SnO2 rust layer, while EDTA partly remove the green rust layer, no new substances formed on the sample surface after cleaning. Both EDTA and potassium sodium tartrate are chelating agents. The chelation coordination form and ring formation structures are different, which result in diffe-rent adsorption capacity for Cu2+, and make obvious different cleaning effect.
Key words:  EDTA    potassium sodium tartrate    bronze rust    corrosion rate    chelating agent
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG178  
基金资助: 国家重点研发计划(2020YFC1522000)
通讯作者:  *宋述鹏,武汉科技大学副教授。本科毕业于湖北大学,硕博连读毕业于武汉大学,毕业后在武汉科技大学任教,纽约州立大学布法罗分校访问学者。以第一作者在国内外学术期刊上发表论文40余篇,申请国家发明专利12项,其中授权5项。研究工作主要有金属材料的制备与表征,开展关于先进金属材料的基础理论和应用研究,主持和参与包括国家自然科学基金面上项目、国家自然科学基金青年项目多项。spsong@wust.edu.cn   
作者简介:  毕江元,2016年9月至2020年6月就读于湖北汽车工业学院,现为武汉科技大学材料与冶金学院硕士研究生。主要从事金属材料特别是青铜合金的保护研究。
引用本文:    
毕江元, 宋述鹏, 丁兴, 柯德庆, 周和荣. 酒石酸钾钠和EDTA对青铜表面锈蚀的清洗效果对比研究[J]. 材料导报, 2023, 37(19): 22030208-6.
BI Jiangyuan, SONG Shupeng, DING Xing, KE Deqing, ZHOU Herong. Comparative Study on the Cleaning Effect of Potassium Sodium Tartrate and EDTA on Surface Corrosion of Bronze. Materials Reports, 2023, 37(19): 22030208-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030208  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22030208
1 Wu Y Q, Wang J L, Yang C S, et al. Corrosion Science and Protection Technology, 2012, 24(2), 167 (in Chinese).
吴玉清, 王菊琳, 杨传森, 等. 腐蚀科学与防护技术, 2012, 24(2), 167.
2 Feng S B, Hu F H, Feng L T. Corrosion and Protection, 2009, 30(1). 7(in Chinese).
冯绍彬, 胡芳红, 冯丽婷. 腐蚀与防护, 2009, 30(1), 7.
3 Liao Y. Sciences of Conservation and Archaeology, 2003, 15(2), 20(in Chinese).
廖原. 文物保护与考古科学, 2003, 15(2), 20.
4 Rahmouni K, Takenouti H, Hajjaji N, et al. Electrochimica Acta, 2009, 54(22), 5206.
5 Alfantazi A M, Ahmed T M, Tromans D. Materials & Design, 2009, 30(7), 2425.
6 Scott D A. Journal of the American Institute for Conservation, 2013, 29(2), 193.
7 Wu Y Q. Study the evaluation indicators and methods of cleaning agent of bronze protective materials. Master's Thesis, Beijing University of Che-mical Technology, China, 2014(in Chinese).
吴玉清. 青铜器保护材料—清洗剂评价指标及评价方法研究, 硕士学位论文, 北京化工大学, 2014.
8 Huo W. Journal of Tsinghua University(Philosophy and Social Sciences), 2022, 37(1), 213(in Chinese).
霍巍. 清华大学学报(哲学社会科学版), 2022, 37(1), 213.
9 Wang N, Heng J S, Sun S Y, et al. Sciences of Conservation and Archaeology, 2007, 23(4), 45(in Chinese).
王宁, 何积铨, 孙淑云, 等. 文物保护与考古科学, 2007, 23(4), 45.
10 Rahmouni K, Takenouti H, Hajjaji N, et al. Electrochimica Acta, 2009, 54(22), 5206.
11 Li B J, Jiang X D, Pan C X. Materials Reports, 2017, 31(11), 138(in Chinese).
李冰洁, 江旭东, 潘春旭. 材料导报, 2017, 31(11), 138.
12 Li X D, An M M. Materials Reports, 2017, 31(22), 163(in Chinese).
李晓东, 安梅梅. 材料导报, 2017, 31(22), 163.
13 Mauro M, Carlo L, Annamaria G, et al. Journal of Cultural Heritage, 2003, 23(4), 147.
14 Alfantazi A M, Ahmed T M, Tromans D. Materials & Design, 2009, 30(7), 2425.
15 Zheng L P. Journal of Chongqing Institute of Technology, 2007, 12(6), 61(in Chinese).
郑利平. 重庆工学院学报, 2007, 12(6), 61.
16 Rahmouni K, Takenouti H, Hajjaji N, et al. Electrochimica Acta, 2009, 54, 5206.
17 Yuan H F, Wang G, Xu M, et al. Acta Scientiae Circumstantiae, 2019, 39(12), 3985(in Chinese).
袁海飞, 王刚, 徐敏, 等. 环境科学学报, 2019, 39(12), 3985.
18 Lei M, Tian Z G Y, Liao B H, et al. Acta Scientiae Circumstantiae, 2008, 21(1), 150(in Chinese).
雷鸣, 田中干也, 廖柏寒, 等. 环境科学研究, 2008, 21(1), 150.
19 Rood J A, Noll B C, Henderson K W. Journal of Solid State Chemistry, 2010, 183(1), 270
20 Ding C M, Chen N S, Li Q, et al. Chinese Journal of Applied Chemistry, 2005, 22(3), 312(in Chinese).
丁纯梅, 陈宁生, 李倩, 等. 应用化学, 2005, 22(3), 312.
[1] 陈钢, 雷玉成, 鞠娜, 朱强, 王丹, 李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
[2] 杨贵荣,宋文明,董雪娇,张玉福,王富强,李 健,马 颖. CO2分压对20#钢在CO2/H2O气液两相塞状流中腐蚀行为的影响[J]. 《材料导报》期刊社, 2018, 32(9): 1557-1563.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed