Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 84-90    https://doi.org/10.11896/j.issn.1005-023X.2017.019.012
  材料综述 |
功能化碳纳米管改性热塑性复合材料研究进展*
常艺1,2, 裴久阳1,2, 周苏生1,2, 陈名海2, 刘宁1, 李清文2
1 合肥工业大学材料科学与工程学院,合肥 230009;
2 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
Progress in Functionalized Carbon Nanotubes-modified Thermoplastic Polymer Nanocomposites
CHANG Yi1,2, PEI Jiuyang1,2, ZHOU Susheng1,2, CHEN Minghai2, LIU Ning1, LI Qingwen2
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009;
2 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
下载:  全 文 ( PDF ) ( 1666KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管(CNT)具有纳米级直径、大长径比、高强度,同时又具有优异的柔韧性以及良好的化学稳定性,这使得CNT可以成为增强聚合物复合材料的理想填料。然而,由于范德华力相互作用,CNT极难在热塑性基体中形成稳定分散。将CNT表面功能化是有效改善CNT与树脂基体亲和性和实现有效分散的重要手段。综述了CNT功能化的方法,功能化CNT在热塑性基体中的分散研究进展,及其改性后对热塑性基体的电学和力学性能等的影响,最后阐述了目前CNT在聚合物中应用的关键问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常艺
裴久阳
周苏生
陈名海
刘宁
李清文
关键词:  功能化  碳纳米管  热塑性材料  电学性能  力学性能    
Abstract: Carbon nanotube (CNT) exhibits excellent flexibility, ultra-high strength,good chemical stability properties as well as nanometer scale diameter and high aspect ratio, which make it an ideal reinforcement filler for high strength thermoplastic polymer composites. However, since CNT usually forms stable bundles due to strong van der Waals interactions, CNT is extremely difficult to be dispersed and aligned in polymer matrix. This paper reviews recent research progress of the related technology to improve the surface modification and dispersion of CNT in thermoplastic polymer matrix, and also introduces the physical properties and applications of the nanocomposites.Finally the current key problem of CNT application in thermoplastic polymer composites is elaborated.
Key words:  functionalization    carbon nanotube    thermoplastic polymer    electrical conductivity    mechanical property
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB332  
基金资助: *苏州市科技项目纳米专项(ZXG2012007)
作者简介:  常艺:男,1990年生,硕士研究生,主要从事碳纳米管改性热塑性复合材料性能研究 E-mail:ychang2015@sinano.ac.cn 陈名海:通讯作者,男,1978年生,博士,项目研究员,主要从事功能纳米碳材料制备及应用研究 E-mail:mhchen2008@sinano.ac.cn
引用本文:    
常艺, 裴久阳, 周苏生, 陈名海, 刘宁, 李清文. 功能化碳纳米管改性热塑性复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 84-90.
CHANG Yi, PEI Jiuyang, ZHOU Susheng, CHEN Minghai, LIU Ning, LI Qingwen. Progress in Functionalized Carbon Nanotubes-modified Thermoplastic Polymer Nanocomposites. Materials Reports, 2017, 31(19): 84-90.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.012  或          http://www.mater-rep.com/CN/Y2017/V31/I19/84
1 De Volder M F L,Tawfick S H,Baughman R H, et al. Carbon nanotubes: Present and future commercial applications[J].Science,2013,339(6119):535.
2 Ma P C,Siddiqui N A,Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Appl Sci Manuf,2010,41(10):1345.
3 Sahoo N G,Rana S,Cho J W, et al. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Prog Polym Sci,2010,35(7):837.
4 Deng H,Lin L,Ji M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Prog Polym Sci,2014,39(4):627.
5 Byrne M T, Gun′ko Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Adv Mater,2010,22(15):1672.
6 Ajayan P M,Stephan O,Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science,1994,265(5176):1212.
7 Grunlan J C,Mehrabi A R,Bannon M V, et al. Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold[J]. Adv Mater,2004,16(2):150.
8 Wu T, Chen E. Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology[J]. Compos Sci Technol,2008,68(10-11):2254.
9 Pang H,Chen C,Bao Y, et al. Electrically conductive carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure[J]. Mater Lett,2012,79:96.
10 Du J H,Bai J, Cheng H M. The present status and key problems of carbon nanotube based polymer composites[J]. Express Polym Lett,2007,1(5):253.
11 Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants[J]. Sci Technol Adv Mater,2016,16(2):024802.
12 Jogi B F, Sawant M,Kulkarni M, et al. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A review[J]. J Encapsulation Adsorption Sci,2012,2(4):69.
13 Mittal G,Dhand V,Rhee K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. J Ind Eng Chem,2015,21:11.
14 Zheng Q,Xia D,Xue Q, et al. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system[J]. Appl Surf Sci,2009,255(6):3534.
15 Müller M T,Krause B, Pötschke P. A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive[J]. Polymer,2012,53(15):3079.
16 Müller M T,Pötschke P, Voit B. Dispersion of carbon nanotubes into polyethylene by an additive assisted one-step melt mixing approach[J]. Polymer,2015,66:210.
17 Coleman J N,Khan U, Gun′ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv Mater,2006,18(6):689.
18 Mir S M,Jafari S H,Khonakdar H A, et al. A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions[J]. Mater Des,2016,111:253.
19 Yoon H,Yamashita M,Ata S, et al. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites[J]. Sci Rep,2014,4:3907.
20 Mu M,Walker A M,Torkelson J M, et al. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes[J]. Polymer,2008,49(5):1332.
21 Socher R,Krause B,Müller M T, et al. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites[J]. Polymer,2012,53(2):495.
22 Villmow T,Pötschke P,Pegel S, et al. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix[J]. Polymer,2008,49(16):3500.
23 Villmow T, Kretzschmar B, Pötschke P. Influence of screw confi-guration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites[J]. Compos Sci Technol,2010,70(14):2045.
24 Socher R,Jakisch L,Krause B, et al. Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites[J]. Polymer,2013,54(20):5391.
25 Hu N,Zhou H,Dang G, et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization[J]. Polym Int,2007,56 (5):655.
26 Blond D,Barron V,Ruether M, et al. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functio-nalized nanotubes[J]. Adv Funct Mater,2006,16(12):1608.
27 Xia H S, Song M. Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites[J]. J Mater Chem,2006,16(19):1843.
28 Tang Guoqiang,Wang Hongmin, Jin Shengsong, et al.Interaction between multi-walled carbon nanotubes and bromime and conducting mechanism [J]. Acta Chim Sin,2008, 66(6):675(in Chinese).
唐国强,王红敏,晋圣松,等.多壁碳纳米管与溴的相互作用及导电机理[J]. 化学学报,2008,66(6):675.
29 Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2.
30 Wang Xian. The conductive mechanism & influencing factors of the carbon nano-tube conductive coatings[J]. Shanghai Coatings,2012,50(9):40(in Chinese).
王娴.碳纳米管导电涂料的导电机理及影响因素[J]. 上海涂料,2012,50(9):40.
31 Zhang R,Baxendale M, Peijs T. Universal resistivity-strain depen-dence of carbon nanotube/polymer composites[J]. Phys Rev B,2007,76(19):5433.
32 Sandler J K W,Kirk J E,Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer,2003,44(19):5893.
33 Guo J X,Liu Y J,Prada-Silvy R, et al. Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites[J]. J Polym Sci Part B: Polym Phys,2014,52(1):73.
34 Grossiord N,Loos J,van Laake L, et al. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers[J]. Adv Funct Mater,2008,18(20):3226.
35 Gao X,Zhang S,Mai F, et al. Preparation of high performance conductive polymer fibres from double percolated structure[J]. J Mater Chem,2011,21(17):6401.
36 Zhang S,Deng H,Zhang Q, et al. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties[J]. ACS Appl Mater Interfaces,2014,6(9):6835.
37 Lellinger D,Xu D,Ohneiser A, et al. Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites[J]. Physica Status Solidi B,2008,245(10):2268.
38 Peng B,Locascio M,Zapol P, et al. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements[J]. Nat Nanotechnol,2008,3(10):626.
39 Wang G,Qu Z,Liu L, et al. Study of SMA graft modified MWNT/PVC composite materials[J]. Mater Sci Eng A,2008,472(1-2):136.
40 Sahoo N G,Jung Y C,Yoo H J, et al. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites[J]. Macromolecular Chem Phys,2006,207(19):1773.
41 Wang T L, Tseng C G. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane[J]. J Appl Polym Sci,2007,105(3):1642.
42 McClory C,McNally T,Brennan G P, et al. Thermosetting polyurethane multiwalled carbon nanotube composites[J]. J Appl Polym Sci,2007,105(3):1003.
43 Meincke O,Kaempfer D,Weickmann H, et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J]. Polymer,2004,45(3):739.
44 Wang H, Xiao R. Preparation and characterization of CNTs/PE micro-nanofibers[J]. Polym Adv Technol,2012,23(3):508.
45 Kim H S,Jang J U,Yu J, et al. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes[J]. Composites Part B: Engineering,2015,79:505.
46 Liu Keyan, Ding Changkun, Guo Chengyue, et al. Preparation and properties of polyethylene terephthalate multi-walled carbon nanotubes nanocomposites[J]. J Funct Mater, 2014(23):23025(in Chinese).
刘柯妍,丁长坤,郭成越,等.聚对苯二甲酸乙二醇酯/多壁碳纳米管基复合材料制备与性能研究[J]. 功能材料,2014(23):23025.
47 Jia J,Zhu L,Wei Y, et al. Triazine-phosphine oxide electron transporter for ultralow-voltage-driven sky blue PHOLEDs[J]. J Mater Chem C,2015,3(19):4890.
48 Yang W,Zhou H,Yang B, et al. Facile preparation of modified carbon nanotube-reinforced PBT nanocomposites with enhanced thermal, flame retardancy, and mechanical properties[J]. Polym Compos,2016,37(6):1812.
49 Wang Zhimiao,Zhang Xingxiang,Wang Xuechen, et al.Preparation and properties of melt-blended carboxyl multi-walled carbon nanotubes/PA66 composite fibers [J].Acta Mater Compos Sin,2011,28(2):16(in Chinese).
王志苗,张兴祥,王学晨,等.熔融共混法制备羧基化多壁碳纳米管/PA66复合纤维及其性能[J].复合材料学报,2011,28(2):16.
50 Lin Z,Zeng Z,Gui X, et al. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications[J]. Adv Energy Mater,2016,6(17):1600554.
51 Connolly T,Smith R C,Hernandez Y, et al. Carbon-nanotube-polymer nanocomposites for field-emission cathodes[J]. Small,2009,5(7):826.
52 Jin Y W,Jung J E,Park Y J, et al. Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization[J]. J Appl Phys,2002,92(2):1065.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[7] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed