Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21120097-6    https://doi.org/10.11896/cldb.21120097
  无机非金属及其复合材料 |
基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析
陈远豪1,2, 肖黎1,3, 梁昌兴1,2, 罗月婷1,2, 龚恒翔1,2
1 重庆理工大学光伏新能源应用技术与设备研究所,重庆 400054
2 重庆理工大学物理实验中心,重庆 400054
3 绿色能源材料技术与系统重庆市重点实验室,重庆 400054
Support Vector Regression Analysis Based on the Process Parameter Optimization of SnO2∶Sb Thin Film Deposition
CHEN Yuanhao1,2, XIAO Li1,3, LIANG Changxing1,2, LUO Yueting1,2, GONG Hengxiang1,2
1 Institute of Photovoltaic New Energy Application Technology and Equipment, Chongqing University of Technology, Chongqing 400054, China
2 Physics Experiment Center, Chongqing University of Technology, Chongqing 400054, China
3 Chongqing Key Laboratory of Green Energy Material Technology and Systems, Chongqing University of Technology, Chongqing 400054, China
下载:  全 文 ( PDF ) ( 7284KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发低成本高质量透明导电氧化物薄膜材料的生长技术对现代光电产业发展十分重要。面对多维的薄膜生长工艺参数空间,在寻求最优薄膜生长参数过程中如何有效降低时间、材料成本是研究人员迫切关注的问题。基于雾化辅助CVD法在石英衬底上制备SnO2∶Sb薄膜,利用实验设计方法,获得不同工艺参数下制备的SnO2∶Sb薄膜实验数据集。应用基于贝叶斯优化的支持向量回归方法,建立SnO2∶Sb薄膜透明导电性能的支持向量回归预测模型,结合预测模型对整个工艺参数空间进行探索。利用有限27组工艺参数组合可在四维参数空间中找到高质量SnO2∶Sb薄膜的有效制备参数。在最优工艺参数下制备薄膜的可见光透过率可达86.61%,方块电阻为21.1 Ω·□-1,膜厚约380 nm。为基于雾化辅助CVD法制备薄膜材料的最优制备工艺探索提供一条有效途径,可有效节约开发成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈远豪
肖黎
梁昌兴
罗月婷
龚恒翔
关键词:  支持向量回归  SnO2∶Sb薄膜  工艺参数优化  雾化辅助CVD    
Abstract: Developing the low-cost transparent conductive oxide film material with high quality is of vital important for the development of modern optoelectronic devices. Upon facing the multi-dimensional thin film growth parameter space, how to reduce the time and material cost effectively in the process of seeking the optimal thin film is an urgent concern for researchers. Based on this, a process parameter optimization approach is proposed focusing on the process of growing SnO2∶Sb thin films on quartz substrates using the mist-CVD method. The mist-CVD system is adopted because its environmentally friendly process to prepare metal oxide of high quality with simple equipment configuration, and shows potential for industrial development. Firstly, A experimental design methods is adopted to design experiments for preparing the transparent conductive thin films considering process parameters of doping concentration, deposition temperature, HCl content and deposition time. Furthermore, the value of figures of merits is introduced to evaluate the transparent conducting property of SnO2∶Sb film. Moreover, to establish the effective prediction model of the transparent conductivity of SnO2∶Sb film under different process parameters, the support vector regression method based on Bayesian optimization is used. The two-dimensional cloud image distribution results show the effective prediction results of the influence of preparation parameters on properties of SnO2∶Sb films, which including 4-dimensional parameter space with a limited combination of 27 sets of experimental results. Finally, the prominent process parameters preparing SnO2∶Sb films with high figures of merits is predicted from the two-dimensional cloud image. The SnO2∶Sb films with high transparency and conductivity can be obtained based on the mist-CVD method adopting the optimized process parameter. The average thickness of the SnO2∶Sb films is about 380 nm, the average visible light transmittance of the sample can reach 86.61%, and the sheet resistance is 21.1 Ω·□-1. This work proposes an effective method for optimizing process parameters during exploring materials or device, which can speed up the development of materials or devices, and save time and materials cost meanwhile.
Key words:  support vector regression    SnO2∶Sb thin film    process parameters optimization    mist-CVD
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB303  
基金资助: 重庆市教育委员会科学技术研究基金(KJQN202201137);重庆市自然科学基金(博士后基金)(cstc2021jcyj-bshX0219);重庆理工大学研究生教育高质量发展项目(gzljg2023315);重庆理工大学研究生创新项目(clgycx20203141)
通讯作者:  肖黎,通信作者,重庆理工大学理学院讲师、硕士研究生导师。2012年华北电力大学材料科学与工程专业本科毕业,2018年获得华北电力大学可再生能源与清洁能源专业博士学位,2018年到重庆理工大学工作至今,目前主要研究领域为新能源材料与器件。   
作者简介:  陈远豪,2019年6月毕业于重庆理工大学,获得学士学位。现为重庆理工大学理学院硕士研究生,目前主要研究领域为宽禁带半导体材料。
引用本文:    
陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
CHEN Yuanhao, XIAO Li, LIANG Changxing, LUO Yueting, GONG Hengxiang. Support Vector Regression Analysis Based on the Process Parameter Optimization of SnO2∶Sb Thin Film Deposition. Materials Reports, 2023, 37(11): 21120097-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120097  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21120097
1 Hosono H. Thin Solid Films, 2007, 515, 6000.
2 Park J S, Maeng W J, Kim H S, et al. Thin Solid Films, 2012, 520, 1679.
3 Park J S, Kim H, Kim I D. Journal of Electroceramics, 2013, 32, 117.
4 Yu X, Marks T, Facchetti A. Nature Materials, 2016, 15, 383.
5 Liu X Z, Zhang X, Tao H, et al. Acta Physica Sinica, 2020(69), 248. (in Chinese).
刘贤哲,张旭,陶洪,等. 物理学报, 2020(69), 248.
6 Kawaharamura T. Japanese Journal of Applied Physics, 2014, 53, 05FF08.
7 Ikenoue T, Sakamoto S I, Inui Y. Japanese Journal of Applied Physics, 2014, 53, 05FF06.
8 Sun Z, Oka D, Fukumura T. Chemical Communications, 2020, 56, 9481.
9 Onyema C C. Mist-CVD deposited ZnO thin films for metal-semiconductor field effect transistors. Ph. D. Thesis, University of Canterbury, New Zealand, 2020.
10 Tanaka K, Mao K, Yoshihisa F, et al. Thin Solid Films, 2020, 697, 137820.
11 Cao B, Adutwum L A, Oliynyk A O, et al. ACS Nano, 2018, 12, 7434.
12 Wen Y F, Cai C Z, Pei J F, et al. Acta Physica Sinica, 2009, 58, 15 (in Chinese).
温玉锋, 蔡从中, 裴军芳, 等. 物理学报, 2009, 58, 15.
13 Zhang Y, Xu X. Optik, 2020, 217, 164808.
14 Attia P M, Grover A, Jin N, et al. Nature, 2020, 578, 397.
15 Zheng Y J, Liang X B, Zhang Q, et al. Materials Reports, 2021, 35, 6 (in Chinese).
郑玉杰, 梁鑫斌, 张起, 等. 材料导报, 2021, 35, 6.
16 Balachandran P V, Kowalski B, Sehirlioglu A, et al. Nature Communications, 2018, 9, 1668.
17 Wei L, Xu X, Gurudayal, et al. Chemistry of Materials, 2019, 31, 7340.
18 Haacke G J. Journal of Applied Physics, 1976, 47, 4086.
19 Pan L J, Chen J Q. Experimental design & data processing, Southeast University Press, China, 2008 (in Chinese).
潘丽军, 陈锦权. 试验设计与数据处理, 东南大学出版社, 2008.
20 Scholkopf B, Sung K K, Burges C J C, et al. IEEE Transactions on Signal Processing, 2002, 45, 2758.
21 Buhmann M. Scholarpedia, 2010, 5, 9837.
22 Cortes C, Vapnik V. Machine Learning, 1995, 20, 273.
23 Cui J X, Yang B. Journal of Software, 2018, 29, 3068 (in Chinese).
崔佳旭,杨博. 软件学报, 2018, 29, 3068.
24 Yao P. Desalination, 2011, 267, 170.
25 Gupta S, Yadav B C, Dwivedi P K, et al. Materials Research Bulletin, 2013, 48, 3315.
26 Ramarajan R, Kovendhan M, Thangaraju K, et al. Applied Surface Science, 2019, 487, 1385.
27 Zhang B. Research on prepareation and optical and electrcal properties of SnO2 low emission films. Ph. D. Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).
张波. SnO2低辐射薄膜的制备与光电性能研究. 博士学位论文, 哈尔滨工业大学, 2011.
28 Yasuoka T, Liu L, Ozaki T, et al. AIP Advances, 2021, 11, 45123.
29 Bayram A B, Ko? M, Akyürekli· S, et al. Journal of the Institute of Science and Technology, 2021, 11, 1102.
30 Leidich P, Mondeshki M, Barton B, et al. Zeitschrift Für Naturforschung B, 2018, 73, 865.
31 Ponja S D, Williamson B A D, Sathasivam S, et al. Journal of Materials Chemistry: C, 2018, 6, 7257.
32 Liu L, Kawaharamura T, Dang G T, et al. Japanese Journal of Applied Physics, 2019, 58, 25502.
33 Scott J I, Martinez-Gazoni R F, Allen M W, et al. Journal of Applied Physics, 2019, 126, 135702.
[1] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[2] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[3] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed