Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 617-620    
  高分子与聚合物基复合材料 |
复合材料层合板阻尼性能的预测与分析
武海鹏
哈尔滨玻璃钢研究院有限公司,哈尔滨 150036
Anticipation and Analysis of the Damping Performance of Composite Laminate
WU Haipeng
Harbin FRP Institute Co. Ltd, Harbin 150036, China
下载:  全 文 ( PDF ) ( 3315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究通过纤维种类、纤维角度、加载频率等参数的试验研究,分析了不同参数变化对复合材料阻尼性能的影响;基于复合材料经典层合理论模型,结合振动梁阻尼性能试验,采用半功率带宽法表征试验结果,分析了纤维材质、激振频率、纤维角度等参数对复合材料阻尼性能的影响,并应用Ritz有限元法预测纤维角度与复合材料阻尼性能的关系,与试验结果进行验证。试验结果表明,树脂基体和纤维体积含量相同的情况下,玻璃纤维阻尼性能优于碳纤维,且纤维角度在35°附近时阻尼损耗因子达到极值,同时本研究采用Ritz法较好地预测了纤维角度对阻尼性能的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武海鹏
关键词:  复合材料  阻尼  振动梁法  半功率带宽法    
Abstract: This article estimated and analyzed the damping performance parameter of glass fiber, carbon fiber laminate. Based on composites classic laminate theory model combined with Vibration beam damping test to analyzed the effect of parameters on composite material such as fiber material, test load frequency, fiber angle and used Ritz finite element method and test result to prove it. The test results show that under same resin base and fiber content volume, glass fiber performance is superior to carbon fiber, and damping factor will reach extreme value when fiber at 35°. Meanwhile this article used Ritz method well estimated the effect of fiber angle on damping performance.
Key words:  composite material    damping    vibration beam    half power bandwidth method
                    发布日期:  2021-07-16
ZTFLH:  V415.1 TB332  
通讯作者:  wu_effort@163.com   
作者简介:  武海鹏,现为哈尔滨玻璃钢研究院有限公司高级工程师,2002年获得哈尔滨工业大学航天学院工程力学硕士学位。研究方向:复合材料结构设计、有限元仿真、复合材料轻量化设计。
引用本文:    
武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
WU Haipeng. Anticipation and Analysis of the Damping Performance of Composite Laminate. Materials Reports, 2021, 35(Z1): 617-620.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/617
1 崔强,俞陆新,柳砚.佳木斯大学学报(自然科学版),2020,38(1),80。
2 孙成,宋春生,刘星宇.玻璃钢/复合材料,2019(6),115.
3 Treviso,B, Genechten V, Mundo D. Composites Part B ,2015 ,78 ,144.
4 Admas R D, Bacon R G. Journal of physics D:Applied Physic, 1973,6,27.
5 Abderrahim E M, Mustapha A, Youssef S.Composites: Part B ,2008,39,1069.
6 Abhay G, Satyajit P, Rajidi S.Composite Structures:Composite Structures,2020,247,1.
7 Domenico L, Janko S, Elvio B.Mechanical Systems and Signal Proces-sing,2020,145,11.
8 Zhe D, Li L, Yu J.Mechanical Systems and Signal Processing,2018 ,98,613.
9 Riccardo V, Chiara B.Progress in Aerospace Sciences,2015,78,19.
10 漆文凯,程博.振动测试与诊断,2013,6(33),1049.
11 Yi H, Yi X, Yan Q L. Composite Structures,2018 (184),728.
12 Bohdan D, Solomi J, Malcolm J.Journal of Sound and Vibration,2018 ,413, 173.
13 Jean-Marie Berthelot, Youssef S. Composites Science and Technology,2004,64,1261.
14 郑长升,梁森.高分子材料科学与工程,2020(5),78.
15 闫盛宇,梁森,郑长升.西安交通大学学报,2019,53(11),96.
16 温博.合成材料老化与应用,2019,48(6),72.
17 白宇杰,王黎明,张小章.原子能科学技术.2019,53(3),525.
18 GB/T 18258-2000, 阻尼材料-阻尼性能测试方法. 北京,中国标准出版社,2001.
19 ASTM E756-04. Standard test method for measuring vibration-damping properties of material. Designation: ASTM international, 2005.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[8] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[9] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[12] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[13] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed