Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 438-442    
  金属与金属基复合材料 |
SA508 Gr.4N钢的辐照脆化性能研究进展
曾小川1,2, 李学军2, 邓小云2, 胡侨丹1, 尤磊2
1 上海交通大学材料科学与工程学院,先进材料与凝固实验室, 上海 200240
2 中广核工程有限公司,核电安全监控技术与装备国家重点实验室, 深圳 518172
Research Progress of Irradiation Embrittlement Properties of SA508 Gr.4N Steel
ZENG Xiaochuan1,2, LI Xuejun2, DENG Xiaoyun2, HU Qiaodan1, YOU Lei2
1 Advanced Materials and Solidification Laboratory, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2 State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd, Shenzhen 518172, China
下载:  全 文 ( PDF ) ( 2895KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低合金钢的辐照脆化效应与合金成分有着密切关联。通过调整合金元素,SA508 Gr.4N具有良好的初始力学性能,但同时也可能为其辐照性能带来劣化风险。在辐照条件下,SA508 Gr.4N钢的力学性能变化与合金元素存在一定的关系,在其微观特征变化中也发现合金元素间存在某种协同作用。本文对当前国际上SA508 Gr.4N钢辐照性能研究的最新进展进行介绍和评价,并对未来值得探索的方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾小川
李学军
邓小云
胡侨丹
尤磊
关键词:  辐照脆化  合金元素  SA508  Gr.4N钢  力学性能  微观特征    
Abstract: The irradiation embrittlement effect of low alloy steel is closely related to the alloy composition. On the basis of steel used in traditional nuc-lear power plant, SA508 Gr.4N steel has outstanding initial mechanical properties by adjusting alloy elements, but it may also bring the risk of deterioration of its radiation property. Under the irradiation condition, the variation in the mechanical properties of SA508 Gr.4N steel has a certain relationship with the alloy elements, and a synergy effect between alloy elements is also found in the changes of micro-features. The latest research progress in the current world on the irradiation properties of SA508 Gr.4N steel is introduced and evaluated in this paper, and furthermore, the future directions worth exploring are presented.
Key words:  irradiation embrittlement    alloy element    SA508 Gr.4N steel    mechanical properties    micro-features
                    发布日期:  2021-07-16
ZTFLH:  TB31  
基金资助: 国家重点研发计划项目(2017YFB0305304)
通讯作者:  qdhu@sjtu.edu.cn   
作者简介:  曾小川,2008年7月毕业于武汉科技大学,获得理学学士学位。现为上海交通大学材料科学与工程学院在职博士研究生,同时担任中广核工程有限公司设计院材料主管设计师,目前在胡侨丹老师指导下主要研究核电站用低合金钢的服役性能。胡侨丹,2007年博士毕业于华中科技大学材料加工工程专业,现任上海交通大学材料科学与工程学院先进材料与凝固研究所研究员,博士生导师。主持国家自然科学基金(5项)、973计划子课题、国家重点研发计划子课题、工信部重大专项子课题、上海市自然基金及中国博士后特别资助等20余项国家(省部)级项目。在本领域权威期刊Acta Mater、Sci Rep、Scripta Mater、Metall Mater Trans A等上发表SCI论文63篇,与李建国教授合作翻译出版本领域权威著作《凝固原理》,申请专利11项,2018年获得上海市人才发展资金资助计划,2019年国家优秀青年科学基金获得者。主要研究方向:先进材料合成与凝固理论。
引用本文:    
曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
ZENG Xiaochuan, LI Xuejun, DENG Xiaoyun, HU Qiaodan, YOU Lei. Research Progress of Irradiation Embrittlement Properties of SA508 Gr.4N Steel. Materials Reports, 2021, 35(Z1): 438-442.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/438
1 Little E A.Materials Science and Technology, 2006, 22, 491.
2 Williams T J, Thomas A F, Berrisford R F, et al. In: Effects of Radiation on Materials, 11th International Symposium, ASTM STP 782, Philadelphia, 1982, pp. 343.
3 Fukuya K, Ohno K, Nakata H, et al.Journal of Nuclear Materials, 2003, 312(2-3),163.
4 Akamatsu M, Van Duysen J C, Pareige P, et al.Journal of Nuclear Materials, 1995, 225,192.
5 Nishiyama Y, Onizawa K, Suzuki M, et al. Acta Materialia, 2008, 25(16), 4510.
6 肖厦子, 宋定坤, 楚海建等. 力学进展, 2015, 45(1), 141.
7 李昌义, 刘正东, 林肇杰.特殊钢, 2010, 31(4), 14.
8 ASME boiler and pressure vessel code, Section II-Materials, Part A-Ferrous material specifications, SA-508 Specification for quenched and tempered vacuum-treated carbon and alloy steel forgings for pressure vessels. American Society of Mechanical Engineers, 2015.
9 Kim M C, Park S G, Lee Y S, et al. In: International Conference on Advances in Nuclear Power Plants, ICAPP, Anaheim, 2008.
10 Lee K H, Park S G, Kim M C, et al.Materials Science and Engineering A, 2012, 534, 75.
11 Kim S, Lee S, Im Y, et al.Metallurgical and Materials Transactions A, 2001, 32, 903.
12 Kim M C, Lee K H, Lee B S, et al. In: ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, PVP2010-26002, Bellevue, 2010, 143.
13 Lee K H, Park S G, Kim M C,et al. Materials Science and Engineering A, 2011, 529, 156.
14 Kim M C, Park S G, Lee K H, et al.International Journal of Pressure Vessels and Piping, 2015, 131, 60.
15 ASME boiler and pressure vessel code, Section XI - Nuclear power plant components in-service inspection rules. American Society of Mechanical Engineers, 2015.
16 刘士峰. 钢的晶界马氏体形成与低温回火脆性. 硕士学位论文, 河北工业大学, 2009.
17 Lea C, Seah M P.Surface Science, 1975, 53(1), 272.
18 Guttmann M, Dumiulin P, Wayman M.Metallurgical Transactions A - Physical Metallurgy and Materials Science, 1982, 13(10), 1693.
19 Park S G, Lee K H, Min K D, et al.Journal of Nuclear Materials, 2012, 426, 1.
20 杨志强. 核压力容器用SA508 Gr.4N钢大锻件的韧脆性研究.博士学位论文, 钢铁研究总院, 2018.
21 杨文斗.核安全, 2012(3), 1.
22 吕铮. 金属学报, 2011, 47(7), 777.
23 李正操, 陈良.金属学报, 2014, 50(11), 1285.
24 黄鹤飞, Bertrand R, Philippe P. 材料导报, 2013, 27(12), 106.
25 Odette G R, Lucas G E.Radiation Effects and Defect in Solids, 1998, 144, 189.
26 Hawthorne J R. In: Proc. 11th Conference on the Effects of Radiation on Materials, ASTM STP 782, Scottsdale, 1982, pp.375.
27 Hawthorne J R.Nuclear Engineering and Design, 1985, 89(1), 223.
28 Nikolaeva A V, Nikalaev Y A. Materials Science and Engineering A, 1997, 234-236, 915.
29 Kryukov A M, Nikolaev Y A, Nikolaeva A V. Nuclear Engineering and Design, 1998,186(3), 353.
30 Stofanak R J, Poskie T J, Li Y, et al. In: International symposium on environmental degradation of materials in nuclear power systems, water reactors, San Diego, 1993.
31 Burke M G, Stofanak R J, Hyde J M, et al. Journal of ASTM Internatio-nal, 2004, 1(5), 1.
32 Wire G L, Beggs W J, Leax T R. In: Effects of Radiation on Materials, 21st International Symposium, ASTM STP 1447, West Conshohocken, 2003, pp. 179.
33 Lee B S, Kim M C, Yoon J H, et al. International Journal of Pressure Vessels and Piping, 2010, 87, 74.
34 Lee C H, Kasada R, Kimura A, et al. Metals and Materials Internatio-nal, 2013, 19(6), 1203.
35 Phythian W J, English C A. Journal of Nuclear Materials,1993, 205(4), 162.
36 Odette G R.Journal of Nuclear Materials, 1994, 212-215(5), 45.
37 Carter R G, Soneda N, Dohi K, et al. Journal of Nuclear Materials, 2001, 298(3), 211.
38 Meslin E, Lambrecht M, Hernandez-Matoral M, et al. Journal of Nuclear Materials, 2010, 406(1), 73.
39 Fukuya K. Journal of Nuclear Science and Technology, 2013, 50(3), 213.
40 Buswell J T, phythian W J, McElroy R J, et al. Journal of Nuclear Materials, 1995, 225(2), 196.
41 Liu C L, Odette G R, Wirth B D, et al. Materials Science and Enginee-ring A, 1997, 238(1), 202.
42 Miller M K, Chernobaeva A A, Shtrombakh Y I, et al.Journal of Nuclear Materials, 2009, 385(3), 615.
43 Bergner F, Ulbricht A, Viehrig H W, et al.Philosophical Magazine Letters, 2009, 89 (12), 795.
44 Wagner A, Ulbricht A, Bergner F, et al. Nuclear Instruments and Met-hods in Physics Research Section B, 2012, 280, 98.
45 Miller M K, Russell K F. Journal of Nuclear Materials, 2007, 371(1-3), 145.
46 Lee G G, Jin H H, Chang K, et al. Journal of Mechanical Science and Technology, 2017, 31(8), 3675.
47 Chaouadi R, Gerard R. Journal of Nuclear Materials, 2005, 345 (1), 65.
48 Malerba L. Journal of Nuclear Materials, 2006, 351(1-3), 28.
49 Terentyev D, Lagerstedt C, Olsson P, et al. Journal of Nuclear Materials, 2006, 351(1-3), 65.
50 Nagai Y, Takadate K, Tang Z, et al. Physical Review B, 2003, 67(22), 224202.
51 Glade S C, Wirth B D, Odette G R, et al. Journal of Nuclear Materials, 2006, 351(1-3), 197.
52 Lambrecht M, Malerba L, Almazouzi A. Journal of Nuclear Materials, 2008, 378(3), 282.
53 Yabuuchi K, Saito M, Kasada R. et al. Journal of Nuclear Materials, 2011, 414(3), 498.
54 Bonny G, Terentyev D, Bakaev A, et al.Journal of Nuclear Materials, 2013, 442(1-3), 282.
55 Ke H, Wells P, Edmondson P D, et al.Acta Materialia, 2017, 138(1), 10.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[10] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[11] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[12] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[13] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[14] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[15] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed