Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 123-127    https://doi.org/10.11896/j.issn.1005-023X.2017.09.017
  材料综述 |
铝合金中的Sn微合金化:强化作用及机制*
贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆
重庆大学材料科学与工程学院,重庆 400044
Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms
JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing
College of Materials Science and Engineering,Chongqing University,Chongqing 400044
下载:  全 文 ( PDF ) ( 1730KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微合金化是提高铝合金性能的重要途径,而Sn是铝合金中最具潜力的微合金化元素之一,可以有效改善合金的组织和性能。微量Sn的加入可以显著影响铝合金中的时效析出,这是由于其在铝基体中固溶度小、扩散速率快以及与空位之间的结合能力较强所致。综述了微量Sn对可热处理强化铝合金的微观结构和力学性能的影响,深入探讨了Sn在铝合金中对时效析出的影响机理,并分析了目前微量Sn化铝合金的研究中仍存在的一些问题及主要的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾志宏
翁瑶瑶
丁立鹏
程韬
刘莹莹
刘庆
关键词:  可热处理强化铝合金    微合金化  时效析出    
Abstract: Microalloying is an effective method to improve the properties of aluminum alloys. Sn is one of the most potential microalloying elements in aluminum alloy, which can significant improve the properties of these alloys. Addition of Sn can distinctly impact the aging precipitation in aluminum alloys due to its low solubility and high diffusivity in matrix and the strong interaction energy with vacancy. This paper introduces the influence of Sn addition on the microstructure and the mechanical properties of the heat-treatable aluminum alloys, and the mechanism of Sn addition on the precipitation is discussed. Besides, the problems and research directions are pointed out.
Key words:  heat-treatable aluminum alloys    Sn    microalloying    aging precipitation
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TG146.2+1  
基金资助: *国家自然科学基金(51271209); 国家国际科技合作专项(2014DFA51270)
作者简介:  贾志宏:男,1974年生,博士,教授,主要从事铝合金形变组织及微结构的研究 E-mail:zhihongjia@cqu.edu.cn
引用本文:    
贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms. Materials Reports, 2017, 31(9): 123-127.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.017  或          http://www.mater-rep.com/CN/Y2017/V31/I9/123
[1] Hirsch J.Recent development in aluminium for automotive applications[J]. Trans Nonferrous Met Soc China,2014,24(7):1995.
[2] Millera W S, Zhuanga L, Bottemaa J, et al.Recent development in aluminium alloys for the automotive industry[J]. Mater Sci Eng A,2000,280(1):37.
[3] Hirsch J.Automotive trends in aluminium—The european perspective[J]. Mater Forum,2004,28:15.
[4] Fridlyander I N, Siste V G, Grushko O E, et al.Aluminium alloys promising materials[J]. Metal Sci Heat Treat,2002,44(9-10):365.
[5] Antunes R A, de Oliveira M C L. Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials[J]. Mater Des,2014,63:247.
[6] Bardel D, Perez M, Nelias D, et al.Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 alumi-nium alloy[J]. Acta Mater,2013,62:129.
[7] Chen Y, Weyland M, Hutchinson C R.The effect of interrupted a-ging on the yield strength and uniform elongation of precipitation-hardened Al alloys[J]. Acta Mater,2013,61:5877.
[8] Pogatscher S, Antrekowitsch H, Uggowitzer P J.Interdependent effect of chemical composition and thermal history on artificial aging of AA6061[J]. Acta Mater,2012,60(15):5545.
[9] Pogatscher S, et al.Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J]. Acta Mater,2011,59(9):3352.
[10] Matsuda K, Sakaguchi Y, Miyata Y, et al.Precipitation sequence of various kinds of metastable phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy[J]. J Mater Sci,2000,35(1):179.
[11] Niwa K, Matsuda K, Nakamura J, et al. The effect of Ag-addition on precipitation sequence in Al-1.0mass%Mg2Si-Excess 0.4mass% Si alloy[J]. Mater Sci Forum,2007,561-565:239.
[12] Matsuda K, et al.New quaternary grain boundary precipitate in Al-Mg-Si alloy containing silver[J]. Scr Mater,2006,55(2):127.
[13] Man J, Jing L, Jie S G.The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. J Alloys Compd,2007,437(1-2):146.
[14] Marioara C D, Andersen S J, Stene T N, et al.The effect of Cu on precipitation in Al-Mg-Si alloys[J]. Philos Mag,2007,87(23):3385.
[15] Ji S X, Watson D, Wang Y, et al.Effect of Ti addition on mechanical properties of high pressure die cast Al-Mg-Si alloys[J]. Mater Sci Forum,2013,765:23.
[16] Bhattamishra A K, Lal K.Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys[J]. Mater Des,1997,18(1):25.
[17] Dang J Z, Huang Y F, Cheng J.Effect of Sc and Zr on microstructures and mechanical properties of as-cast Al-Mg-Si-Mn alloys[J]. Trans Nonferrous Met Soc China,2009,19(3):540.
[18] Saito T, Wenner S, Osmundsen E, et al.The effect of Zn on preci-pitation in Al-Mg-Si alloys[J]. Philos Mag,2014,94(21):2410.
[19] Koshino Y, Kozuka M, Hirosawa S, et al.Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography[J]. J Alloys Compd,2015,622:765.
[20] Bjørge R, Marioara C D, Andersen S J, et al.Precipitation in two Al-Mg-Ge alloys[J]. Metall Mater Trans A,2010,41(8):1907.
[21] Bourgeois L, Nie J F, Muddle B C. On the role of tin in promoting nucleation of the θ' phase in Al-Cu-Sn[J]. Mater Sci Forum,2002,396-402:789.
[22] Banerjee S, Robi P S, Srinivasan A, et al.Effect of trace additions of Sn on microstructure and mechanical properties of Al-Cu-Mg alloys[J]. Mater Des,2010,31(8):4007.
[23] Sadhukhan S, Kundu M, Ghosh M.Effect of trace added Sn on mechanical properties of Al-Zn-Mg alloy[J]. Adv Mater Res,2013,828:73.
[24] Pogatscher S, Antrekowitsch H, Werinos M, et al.Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys[J]. Phys Rev Lett,2014,112:227501-1.
[25] Hardy H K.The aging characteristics of ternary aluminum-copper alloys with cadmium, indium, or tin[J]. J Inst Met,1952,80(1371):83.
[26] Bourgeois L, Nie J F, Muddle B C.Assisted nucleation of θ' phase in Al-Cu-Sn: The modified crystallography of tin precipitates[J]. Philos Mag,2005,85(29):487.
[27] Ringer S P, Hono K, Sakurai T.The effect of trace additions of Sn on precipitation in Al-Cu[J]. Metall Mater Trans A,1995,26:2207.
[28] Gao X H, Nie J F, Muddle B C.Heterogeneous nucleation of preci-pitate phase θ' in microalloyed Al-Cu based alloys[J]. Japan Institute Met Mater,1999,63:225.
[29] Noble B.Theta-prime precipitation in aluminium-copper-cadmium alloys precipitation theta-prime dans les alliages aluminium- cuivre-cad-mium θ'-Ausscheidung in aluminium-kupfer-kadmium-legierungen[J]. Acta Metall,1968,16(3):93.
[30] Honma T, Saxey D W, Ringer S P. Effect of trace addition of Sn in Al-Cu alloy[J]. Mater Sci Forum,2006,519-521:203.
[31] Son S K, Takeda M, Mitome M, et al.Precipitation behavior of an Al-Cu alloy during isothermal aging at low temperatures[J]. Mater Lett,2005,59:629.
[32] Vaithyanathan V, Wolverton C, Chen L Q.Multiscale modeling of θ' precipitation in Al-Cu binary alloys[J]. Acta Mater,2004,52(10):2973.
[33] Kimura H, Hasiguti R.Interaction of vacancies with Sn atoms and the rate of GP zone formation in an Al-Cu-Sn alloy[J]. Acta Metall,1961,9(12):1076.
[34] Silcock J M, Heal T J, Hardy H K.Intermediate precipitates in aged binary alloys of aluminum with cadmium, indium, or tin[J]. J Institute Met,1955,84(1650):19.
[35] Ringer S P, Hono K, Sakurai T.Nucleation and growth of θ' precipitation in Sn-modified A1-Cu alloys APF/MTEM observations[J]. Appl Surf Sci,1995,87(88):223.
[36] Sankaren R, Laird C.Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ' plates in Al-Cu alloy[J]. Mater Sci Eng A,1974,14:271.
[37] Bourgeois L, Dwyer C, et al.The magic thicknesses of θ' precipitates in Sn-microalloyed Al-Cu[J]. Acta Mater,2012,60(2):633.
[38] Silcock J M, Flower H M.Comments on a comparison of early and recent work on the effect of trace additions of Cd, In, or Sn on nucleation and growth of θ' in Al-Cu alloys[J]. Scr Mater,2002,46:389.
[39] Shu J.Effect of trace Sn(In) addition on ageing behavior and microstructure evolution of Al-3.5%Cu alloy[D]. Changsha: Central South University,2012 (in Chinese).舒军. 微量Sn对Al-Cu-(Mg)合金时效行为及微观组织的影响[D]. 长沙: 中南大学,2012.
[40] Timelli G, Bonollo F.Influence of tin and bismuth on machinability of lead free 6000 series aluminium alloys[J]. Mater Sci Technol,2011,27(1):291.
[41] Werinos M, Antrekowitsch H, Ebner T, et al.Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging[J]. Mater Des,2016,107:257.
[42] Werinos M, Antrekowitsch H, Kozeschnik E, et al.Ultrafast artificial aging of Al-Mg-Si alloys[J]. Scr Mater,2015,112:148.
[43] Werinos M, et al.Design strategy for controlled natural aging in Al-Mg-Si alloys[J]. Acta Mater,2016,118:296.
[44] Xu G F, Mou S Z, Yang J J, et al.Effect of trace rare earth element Er on Al-Zn-Mg alloy[J]. Trans Nonferrous Metals Soc China,2006,16:598.
[45] Jiang R P.The effect of Sn addition on aging properities in Al-Zn-Mg-Cu alloys[D]. Changsha: Central South University,2011(in Chinese).姜荣票. Sn对Al-Zn-Mg-Cu合金时效性能的影响[D]. 长沙: 中南大学,2011.
[46] Khireche S, Boughrara D, Kadri A, et al.Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.% NaCl solution[J]. Corros Sci,2014,87:504.
[47] Lin K L, Liu T P.The electrochemical corrosion behaviour of Pb-free Al-Zn-Sn solders in NaCl solution[J]. Mater Chem Phys,1998,56:171.
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
[3] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
[4] 黄章, 杜传治, 方金林, 于浩, 黎淑英, 宋成浩, 段晓妮. Nb微合金化对Q500MPa级热轧H型钢组织和性能的影响[J]. 材料导报, 2020, 34(14): 14175-14180.
[5] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[6] 王璐, 郭杰, 郝瑞亭, 顾康, 刘斌, 王远方舟, 孙帅辉. ZnS溅射功率对Cu2ZnSnS4薄膜附着性及太阳电池性能的影响[J]. 材料导报, 2019, 33(Z2): 24-27.
[7] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[8] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[9] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[10] 胡彬, 易幼平, 黄始全, 何海林, 王并乡, 郭万富. 冷轧变形量对2A14铝合金高筒件时效析出行为及力学性能的影响[J]. 材料导报, 2019, 33(24): 4122-4125.
[11] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[12] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[13] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[14] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[15] 樊江磊, 刘占云, 李育文, 吴深, 王霄, 刘建秀. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774-3779.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed