Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 496-500    
  高分子与聚合物基复合材料 |
羧甲基壳聚糖-羧基葡聚糖凝聚微滴的制备及其酵母细胞毒性
胡汉娇1, 梁兴唐2, 汪双双2, 张霞1, 尹艳镇1,2, 尹雪斌3
1 广西大学化学化工学院,南宁 530004
2 北部湾大学石油化工学院,钦州 535011
3 中国科学技术大学,苏州研究院功能农业重点实验室,苏州 215123
Preparation of Coacervate Microdroplets Based on Carboxymethyl Chitosan and Carboxyl Dextran and Its Cytotoxicity Towards Yeast
HU Hanjiao1, LIANG Xingtang2, WANG Shuangshuang2, ZHANG Xia1, YIN Yanzhen1,2, YIN Xuebin3
1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
2 College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
3 Advanced Laboratory for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
下载:  全 文 ( PDF ) ( 5312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凝聚微滴通过自组装在细胞表面形成仿生细胞壁,可保护细胞,降低外界刺激和化学环境引起的损害。天然高分子具有生物相容性好及可生物降解等优点,可用于制备结构稳定的凝聚微滴,探索其在细胞保护领域的应用具有重要价值。本实验以壳聚糖和葡聚糖天然高分子为原料,制备羧甲基壳聚糖(CMCS)和羧基葡聚糖(DEX-COOH),进而制备凝聚微滴,利用傅里叶变换红外光谱(FTIR)、紫外-可见吸收光谱(UV-vis)、倒置荧光显微镜(FIM)、激光扫描共聚焦显微镜(CLSM)与动态光散射(DLS)等技术对其进行表征。结果表明,在CMCS与DEX-COOH的质量浓度比为1∶2条件下制备的凝聚微滴的稳定性最好,该凝聚微滴对酿酒酵母未产生细胞毒性,在细胞保护领域具有潜在应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡汉娇
梁兴唐
汪双双
张霞
尹艳镇
尹雪斌
关键词:  羧甲基壳聚糖  羧基葡聚糖  凝聚微滴  益生菌  细胞毒性    
Abstract: Coacervate microdroplets can form an artificial cell wall on the cell surface via self-assembly, which can protect the cell and decrease the damage caused by external stimulation and chemical environment. Natural polymers with advantages such as good biocompatibility and biodegradability, can be employed to prepare coacervate microdroplets with stable structure. It is of great significance to explore the preparation methods of coacervate microdroplets and their application in the cell protection. In this paper, chitosan and dextran were used to prepare the basic element materials of coacervate microdroplets, carboxymethyl chitosan (CMCS) and carboxyl dextran (DEX-COOH), which were employed to construct the coacervate microdroplets. Some techniques such as Fourier Transform Infrared Spectrometer (FTIR), UV-visable spectrophotometry (UV-vis), fluorescent inverted microscope (FIM), confocal laser scanning microscope (CLSM) and dynamic light scattering (DLS) were used to characterize the structure of coacervate microdroplets. The results showed that the stability of the coacervate microdroplets prepard under the condition that the mass concentration ratio of CMCS and DEX-COOH was 1∶2. Without cytotoxicity to saccharomyces cerevisiae, the prepared coacervate microdroplets present potential applications in the improvement of probiotics resistance to external stimulation.
Key words:  carboxymethyl chitosan    carboxyl dextran    coacervate microdroplets    probiotics    cytotoxicity
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  O636.1  
  Q735  
基金资助: 国家自然科学基金(51663020)
通讯作者:  yinyanzhen2018@163.com   
作者简介:  胡汉娇,2017年9月就读于广西大学,硕士研究生。于2018年9月起在哈尔滨工业大学联合培养学习,研究方向为微生物益生菌的防护与增活。尹艳镇,北部湾大学教授,兼职广西大学博士研究生/硕士研究生导师。2011年7月毕业于吉林大学化学学院,获得高分子化学与物理专业博士学位。同年加入北部湾大学工作至今,主要从事海洋废弃物资源绿色加工及富硒功能化利用、滨海化工污染物监测与防控相关研究工作。近五年发表SCI论文6篇,申报发明专利1项。
引用本文:    
胡汉娇, 梁兴唐, 汪双双, 张霞, 尹艳镇, 尹雪斌. 羧甲基壳聚糖-羧基葡聚糖凝聚微滴的制备及其酵母细胞毒性[J]. 材料导报, 2020, 34(Z2): 496-500.
HU Hanjiao, LIANG Xingtang, WANG Shuangshuang, ZHANG Xia, YIN Yanzhen, YIN Xuebin. Preparation of Coacervate Microdroplets Based on Carboxymethyl Chitosan and Carboxyl Dextran and Its Cytotoxicity Towards Yeast. Materials Reports, 2020, 34(Z2): 496-500.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/496
1 Banerjee G, Ray A K.Research in Veterinary Science, 2017, 115, 66.
2 周晓丹, 张昊, 郭慧媛, 等.中国乳业, 2013, 4(136), 46.
3 Drobot B, Drobot B, Iglesias-Artola J M, et al. Nature Communications, 2018, 9, 3643.
4 Chang L W, Lytle, T K, Radhakrishna M, et al.Nature Communications, 2017, 8, 1273.
5 You G, Liu X L, Zhao M M.Food Hydrocolloids, 2018, 74, 255.
6 Li J, Liu X, Abdelmohsen L K, et al.Small, 2019, 15(36), 1.
7 Schuster B S, Reed E H, Parthasarathy R, et al. Nature Communications, 2018, 9, 2985.
8 Karabiyik A O, Kayitmazer A B, Torun K G.Biomacromolecules, 2018, 19(4), 1198.
9 Wang S, Yuan F, Chen G, et al. RSC Advances, 2014, 4(95), 52940.
10 Zhao Y, Zhang X, Wang Y, et al.Carbohydrate Polymers, 2014, 105, 63.
11 Su D Y, Liu X M, Wang L, et al. Advanced Functional Materials, 2018, 28(10), 1705699.
12 Zhu L, Zou D Q, Fan Z Q, et al.Archives of Insect Biochemistry and Phy-siology, 2018, 99(2), e21499.
13 李旭飞, 车阳丽, 吕艳, 等.材料导报:综述篇, 2018, 32(11), 3823.
14 钱倩倩, 牛世伟, 章学易, 等.化工新型材料, 2019, 47(3), 236.
15 杨帅, 张可可, 崔婧, 等.材料导报:研究篇, 2017, 31(12), 109.
16 Jiang Z, Jiang Z, Han B, et al. Carbohydrate Polymers, 2015, 129, 1.
17 Shi Z, Neoh K G, Kang E T, et al. Biomacromolecules, 2009, 10(6), 1603.
18 Vecchies F, Sacco P, Decleva E, et al.Biomacromolecules, 2018, 19(10), 3936.
19 Vignesh S, Sivashanmugam A, Annapoorna M, et al.Colloids and Surfaces B: Biointerfaces, 2018, 161, 129.
20 Huang G Q, Han X N, Xiao J X, et al.International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66(2), 89.
21 Huang G Q, Liu L N, Han X N, et al.Materials Science and Engineering: C, 2017, 79, 423.
22 Zheng M, Han B, Yang Y, et al.Carbohydrate Polymers, 2011, 86(1), 231.
23 王钦权, 王远红, 吕志华. 中国海洋大学学报(自然科学报), 2011, 41(增刊), 356.
24 Wen P, Liu X M, Wang L, et al. Small, 2017, 13(22), 1.
25 Schumacher T E, Eynard A, Chintala R.Environmental Science and Pol-lution Research, 2015, 22(6), 4759.
26 柴阿丽, 韩云, 武军, 等. 中国农业科学, 2015, 48(14), 2757.
[1] 李蓉蓉, 王缘, 刘勇, 刘哲, 郑燕, 胡修元, 陈海波, 马凤森. 新型脂质创面敷料透皮液和溶出液中三溴苯酚及铋元素的分析测定及其细胞毒性研究[J]. 材料导报, 2020, 34(Z2): 490-495.
[2] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[3] 喻炎, 马凤森, 陆佳骏, 陈海波. 纤维素类可吸收止血材料的体外细胞毒性评价[J]. 材料导报, 2018, 32(6): 874-880.
[4] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[5] 李珍珍, 张其翼, 黄华莹, 任长靖, 赵强. 近红外荧光磁性复合载药脂质体的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(2): 1-7.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed