Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 412-417    
  金属与金属基复合材料 |
钢中强化析出相的理论基础及其应用研究进展
李钊, 吴润
武汉科技大学材料与冶金学院, 武汉 430081
Research Development of Theoretical Basis and Application of Strengthening Precipitates in Steel
LI Zhao, WU Run
College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 2502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 析出强化能够在提升钢的强度的同时较少损害塑韧性,有效改善钢的强韧性,成为该领域的研究热点之一,并已被广泛应用于高性能钢的生产。钢中常见强化析出相为微合金碳氮化物,按微合金元素Nb、V、Ti的原子半径与C、N原子半径之比可分为间隙相或间隙化合物。这两种析出相在奥氏体或铁素体中析出的定量分析一般用固溶度积规律进行,固溶度积公式是热力学推导而成,实际析出过程偏离平衡态。微合金碳氮化物在热轧中的析出会影响奥氏体的动态再结晶,而在冷却后的铁素体中析出则能产生强化作用。析出动力学通过NrT曲线与PTT曲线来描述,它们是在一定的合金元素含量、析出温度和热轧工艺参数下制定的,是衡量析出的重要参量。在NrT曲线鼻尖温度下析出粒子平均尺寸最小,在PTT曲线鼻尖温度下析出最快。粒子在奥氏体中析出能够提高其完全再结晶温度,使轧制过程在未再结晶温度范围内进行,从而促进晶粒细化。铁素体中析出强化有相间析出强化和弥散析出强化。控制钢中析出相体积分数、尺寸以及形状析出相是改善钢强韧性的有效手段,目前关于这方面的研究取得了一定成果。而对非平衡条件下的析出行为、析出相与基体的晶格错配、析出相的化学增量以及析出相变形引起模量强化对钢的强化作用则是未来的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李钊
吴润
关键词:  析出相  微合金碳氮化物  析出强化  析出热动力学  析出相的控制    
Abstract: The use of precipitation strengthening method can increase the strength of steel while less damaging plasticity and toughness. This streng-thening method has become one of the research focuses in this field because of its characteristics of effectively improving the strength and toughness of steel, and has been widely used in the production of high-performance steel. The common strengthening precipitates in steel are microalloy carbonitrides, which can be divided into interstitial phases or interstitial compounds according to the ratio of the atomic radius of the microalloying elements Nb, V, and Ti to the atomic radius of C and N. The quantitative analysis of the precipitation about these two precipitates in austenite or ferrite is generally carried out by the law of solid solubility. The solid solubility product formula is derived from thermodynamics, but the actual precipitation process is in a non-equilibrium state. The precipitation of microalloy carbonitrides during hot rolling will affect the dynamic recrystallization of austenite, while the precipitation in ferrite during cooling has a strengthening effect. NrT curve and PTT curve are important parameters for measuring precipitation. They are formulated under certain alloy element content, precipitation temperature and hot rolling process para-meters. The precipitation kinetics is described by the NrT curve and the PTT curve, which are formulated under a certain alloy element content, precipitation temperature and hot rolling process parameters, and are important parameters for measuring precipitation. The average size of precipitated particles is the smallest at the nose tip temperature of the NrT curve, and the precipitation time is the shortest at the nose tip temperature of the PTT curve. The precipitation of particles in austenite can increase the complete recrystallization temperature, which is conducive to rolling in the non-recrystallization temperature range, thereby promoting grain refinement. The strengthening effects of precipitation in ferrite include interphase precipitation strengthening and dispersion precipitation strengthening. At present, the research on the strengthening effect of precipitates is mainly focused on controlling the volume fraction, size and shape of steel. At present, certain results have been achieved in related researches on the purpose of improving the strength and toughness of steel by controlling the volume fraction, size and shape of the precipitated phases in the steel. Future research focuses on the precipitation behavior under non-equilibrium conditions, the lattice mismatch between the precipitated phase and the matrix, the chemical increase of the precipitated phase, and the strengthening of the modulus caused by the deformation of the precipitated phase. Future researches should focus on the precipitation behavior under non-equilibrium conditions, the lattice mismatch between the precipitated phase and the matrix, the chemical increase of the precipitated phase, and the strengthening effect of the modulus strengthening caused by the precipitated phase deformation on the steel.
Key words:  precipitates    microalloy carbonitrides    precipitation strengthening    precipitation thermokinetics    controlling of precipitates
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51771139)This work was financially supported by National Natural Science Fund of China (51771139).
通讯作者:  runwu@wust.edu.cn   
作者简介:  李钊,2010年9月至2014年6月,在辽宁科技大学获得材料化学专业理学学士学位,2014年9月至2017年6月在武汉科技大学获得材料科学与工程专业工学硕士学位,目前在攻读武汉科技大学材料科学与工程专业博士学位。以第一作者身份发表中文核心期刊论文1篇,申请国家发明专利1项。研究工作主要围绕高性能钢铁材料展开。吴润,武汉科技大学教授、博士研究生导师。1982年东北大学获学士学位、1985年北京科技大学获硕士学位,2001年华中科技大学获博士学位,香港中文大学高级访问学者,日本国立产业综合技术研究所高级研究学者。全国复合材料学会、全国金相标准委员会会员和体视学会理事。先后发表论文130余篇,其中SCI收录50多篇,其中一篇引用率达到530次以上,EI收录31多篇。获省部级科技进步奖2项,授权国家发明专利6项、申请8项。其团队主要研究方向包括:钢的强韧化、合金元素在金属材料中作用及其对相变组织演变的影响。专著:《钢铁质量及其构件的失效分析》和《金属材料工程实践教学综合实验指导书》;教材:《金属材料学》《材料科学基础》和《金属学及热处理》。
引用本文:    
李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
LI Zhao, WU Run. Research Development of Theoretical Basis and Application of Strengthening Precipitates in Steel. Materials Reports, 2020, 34(Z2): 412-417.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/412
1 Sugimoto K, Usui N, Kobayashi M, et al. ISIJ International, 1992, 32 (12), 1311.
2 韩宝军, 徐洲. 材料导报:综述篇, 2010, 24(1), 99.
3 雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006.
4 陈越. 高强细晶IF钢二相粒子析出行为及热力学和动力学研究. 硕士学位论文, 辽宁科技大学, 2015.
5 Gladman T.The physical metallurgy of microalloyed steel, The Institute of Materials, The Great Britain, 1997.
6 Gladman T.Materials Science and Technology, 1999, 15(1), 30.
7 雍岐龙. 微合金钢中微合金碳氮化物在奥氏体中的沉淀问题. 博士学位论文, 钢铁研究总院, 1987.
8 Sha Q Y, Qiao L F, Xu R J, et al. Materials Science Forum, 2010, 638, 3496.
9 崔忠圻, 刘北兴. 金属学与热处理原理, 哈尔滨工业大学出版社, 2004.
10 惠亚军, 潘辉, 刘锟, 等. 金属学报, 2017, 53(8), 937.
11 Shanmugam S, Ramisetti N K, Misra R D K, et al.Materials Science and Engineering: A, 2008, 478(1-2), 26.
12 Sharma R, Lakshmanan V, Kirkaldy J.Metallurgical Transactions A, 1984, 15(3), 545.
13 雍岐龙, 郑鲁.钢铁, 1988, 23(7), 47.
14 雍岐龙, 吴宝榕, 孙珍宝, 等.钢铁研究学报, 1989, 1(4), 47.
15 Yong Q L, Liu Z D, Sun X J.Iron Steel Vanadium Titanium, 2005, 26(2), 20.
16 雍岐龙, 吴宝榕, 孙珍宝, 等.金属科学与工艺, 1992, 11(1), 6.
17 雍岐龙, 马鸣图, 吴宝榕.微合金钢-物理和力学冶金, 机械工业出版社, 1989.
18 蒋莉萍.HRB400钢筋中钒的析出行为研究. 硕士学位论文, 天津大学, 2007.
19 Hudd R C, Jonas A, Kale M N.ISIJ International, 1971,209,497.
20 曹建春.铌钼复合微合金钢中碳氮化物沉淀析出研究. 博士学位论文, 昆明理工大学, 2006.
21 Sakum T, Honeycombe R W K.Metal Science, 1984, 18(9), 449.
22 雍岐龙, 李永福, 赵昆渝.云南工学院学报, 1990, 6(3), 1.
23 Dutta B, Sellars C M. Materials Science and Technology, 1987, 3(1), 197.
24 Zhou X G, Liu Z Y, Yuan X Q. Journal of Iron and Steel Research, International, 2008, 15(3), 65.
25 戴亮亮, 朱承龙, 顾晔, 等. 钢铁钒钛, 2019, 40(4), 132.
26 罗兴壮, 袁勤攀, 杨跃标, 等.宽厚板, 2018, 24(6), 14.
27 李小琳, 王昭东. 东北大学学报(自然科学版), 2015, 36(12), 1701.
28 李小琳, 王昭东.金属学报, 2015, 51(4), 417.
29 陈俊, 吕梦阳, 唐帅, 等.金属学报, 2014, 50(5), 524.
30 刘成宝, 许宝玉, 蔡晓辉. 中国冶金, 2014, 24(2), 19.
31 李贞顺, 李胜利, 孙卫华, 等.材料热处理学报, 2012, 33(4), 68.
32 杨浩. 超快冷条件下含NB高强船板钢的组织性能调控. 博士学位论文, 东北大学, 2016.
33 张正延. 高NB低碳钢中MO对纳米级析出相及组织性能的影响. 博士学位论文, 东北大学, 2015.
34 Akben M G, Weiss I, Jonas J J. Acta Metallurgical, 1981, 29(4), 111.
35 Akben M G, Bacroix B, Jonas J J. Acta Metallurgical, 1983, 31, 161.
36 Akben M G, Ghandra T, Plassiard P, et al. Acta Metallurgical, 1984, 32(4), 591.
37 Medina S F. Journal of Metar Science, 1997, 32, 1487.
38 Wang Z Q, Sun X J, Yang Z G, et al. Materials Science and Engineering A, 2013, 561, 212.
39 Wang Z Q, Mao X P, Yang Z G, et al. Materials Science and Engineering A, 2011, 529, 459.
40 Lifshttz I M, Slyozov V V. Journal of Physical Chemistry Letters, 1961, 19 (1-2), 35.
41 Wagner C.Berichte Der Bunsen-Gesellschaft-Physical Chemistry, 1961, 65, 581.
42 吴志方, 刘超. 材料导报:综述篇, 2016, 30(3), 23.
43 Monzen R, Tada T, Seo T, et al. Materials Letters, 2004, 58, 2007.
44 吴志方, 吴润.材料导报:综述篇, 2010, 24(8), 113.
45 Lebon A, Vernis J, Rossard C. Metal Science, 1975, 9(1), 36.
46 Jung J G, Park J S, Kim J, et al. Materials Science and Engineering A, 2011, 528(16), 5529.
47 韩赟. 低碳马氏体钢中(Ti,Mo)C析出行为及其强韧性研究. 博士学位论文, 钢铁研究总院, 2013.
48 张可, 李昭东, 隋凤利, 等. 金属学报, 2018, 54(1), 31.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[3] 黄章, 杜传治, 方金林, 于浩, 黎淑英, 宋成浩, 段晓妮. Nb微合金化对Q500MPa级热轧H型钢组织和性能的影响[J]. 材料导报, 2020, 34(14): 14175-14180.
[4] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[5] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[6] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[7] 韩永强, 王宇斌, 陈旋, 吴晓春. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140.
[8] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[9] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[10] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[11] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[12] 邓燕君, 黄光杰, 曹玲飞, 吴晓东, 黄利. 预变形对Al-Cu-Li-Mn-Zr合金的第二相析出及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 569-573.
[13] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[14] 郑亚风, 李晓成, 吴日铭, 吴晓春. 钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 82-87.
[15] 何钦生,邹兴政,李方,李征,唐锐,赵安中,. 冷拉减面率对C形环用Inconel X-750丝材组织性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 100-106.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed