Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 410-417    https://doi.org/10.11896/cldb.201903006
  材料与可持续发展(二)--材料绿色制造与加工* |
用于盐湖卤水镁锂分离的纳滤技术研究进展
徐萍, 钱晓明, 郭昌盛, 徐志伟, 赵立环, 买魏, 李静, 田旭, 朵永超
天津工业大学纺织学院,分离膜与膜过程国家重点实验室,天津 300387
Nanofiltration Technology Used for Separation of Magnesium and Lithium from Salt Lake Brine:a Survey
XU Ping, QIAN Xiaoming, GUO Changsheng, XU Zhiwei, ZHAO Lihuan, MAI Wei, LI Jing, TIAN Xu, DUO Yongchao
State Key Laboratory of Separation Membranes and Membrane Processes,School of Textiles,Tianjin Polytechnic University,Tianjin 300387
下载:  全 文 ( PDF ) ( 2486KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为“推动世界前进的重要元素”的能源金属,锂对国民经济的发展具有重要的战略意义。目前各行业如玻璃、电器和制药等对锂资源的需求量都大幅提高,因此对锂资源的提取和储备至关重要。相比于传统矿石提锂的方法,从盐湖卤水中提锂不需要大量的药剂投入,生产成本大幅降低,因此从盐湖卤水中提取锂资源成为获取锂资源的重要途径。盐湖中镁锂共生存在,镁和锂化学性质相似且它们的离子水合半径差异较小,要实现盐湖高效提锂首先需要解决镁锂分离困难的问题。目前,用于盐湖镁锂分离的方法有很多,但这些工艺存在一些缺陷,如能源消耗大,经济效益低、对环境不友好或不适用于高镁锂比盐湖等。
纳滤是一种介于超滤与反渗透之间的压力驱动膜分离技术,纳滤膜因特殊的孔径范围和荷电性质,能有效分离单价、二价及多价离子,在盐湖卤水的镁锂分离领域表现出显著优势。因此,纳滤分离技术成为一种新兴的镁锂分离手段,被国内外研究者视为今后镁锂分离研究的一个重要方向。研究表明,纳滤膜的分离机理主要包括静电排斥和空间位阻效应,溶质在分离过程中除了受到溶质尺寸与孔径的影响,膜表面的电荷性质对溶质的分离起到了极大的作用。目前,用于镁锂分离的多为商业化纳滤膜,一般带有负电。由于镁锂的离子水合半径非常接近,因此在膜分离过程中孔径筛分作用影响较小,膜分离镁锂主要通过静电排斥来实现。近年来的研究结果表明,荷正电纳滤膜在镁锂分离过程中表现出优异的镁锂选择分离性能。由静电排斥效应可知,荷正电纳滤膜在分离镁和锂的过程中,膜对二价阳离子Mg2+的排斥作用明显高于一价阳离子Li+,因此可使一价阳离子Li+更容易透过膜进入渗透液,而二价阳离子Mg2+则被截留。
本文从盐湖锂资源的分布和提取的角度出发,对盐湖卤水镁锂分离的多种方法进行了全面的归纳。以纳滤膜的结构特点和作用机理为切入点对纳滤膜的相关特性进行了详细的分析概述,重点评述了纳滤法分离镁锂技术的应用现状及其存在的问题。同时针对我国盐湖卤水中镁和锂的特殊结构和分布状态,展望了应用于盐湖镁锂分离的纳滤技术的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐萍
钱晓明
郭昌盛
徐志伟
赵立环
买魏
李静
田旭
朵永超
关键词:  盐湖卤水  锂资源  镁锂分离  纳滤  膜分离    
Abstract: As an energy metal that “pushes the world forward”, lithium plays a significant role in the development of the national economy. Currently, there has been consistent growth in demand for lithium resources of various industries like glass, electrical appliances and pharmaceuticals, etc. Hence, it is of great importance in extraction and storage of lithium resources. Compared with the traditional method of extracting lithium from ores, extracting lithium from salt lake brine show notable superiority, because it is free for large amount of chemical input, and economical with substantially reduced cost, which makes it become a primary way for achieving lithium resources. Unfortunately, lithium and magnesium exist as a symbiosis in the salt lake brine, and the chemical properties of magnesium and lithium are similar with small difference in their ionic hydration radius. As a result, the problem of separating magnesium and lithium must be figure out first, in order to achieve high-efficiency lithium extraction from salt lakes. Presently, there are many ways for separating magnesium and lithium from salt lake. Nevertheless, these methods still suffer from large energy consumption, low economic benefit, environmental unfriendliness, and unfriendly unavailability for high magnesium-lithium ratio salt lake.
Nanofiltration (NF) is a pressure-driven membrane separation technique between ultrafiltration and reverse osmosis. Thanks to the special pore size range and charge properties of nanofiltration membranes, monovalent, divalent and multivalent ions can be separate effectively. Consequently, nanofiltration technique has become an emerging method for magnesium and lithium separation, and shows remarkable advantage in the field of separation of magnesium and lithium in brine of salt lake, which is regarded as an important research direction by researchers at home and abroad.
Research results show that the separation mechanism of NF membrane mainly includes electrostatic repulsion and steric resistance. In addition to the impact of solute size and pore size, the charge properties of the membrane surface exert a great effect on the separation of solute. Currently, the commercial NF membranes that have been mostly employed for magnesium and lithium separation are negative charged membranes. As the difference in ionic hydration radius of magnesium and lithium is not obvious, the steric hindrance effect plays a minor role in the separation process, and the separation of magnesium-lithium by membrane is mainly realized by electrostatic exclusion. In recent years, researchers have verified that positive charged NF membrane presents excellent performance in selective separation of Mg2+ and Li+. According to the electrostatic repulsive effect, high valence cations (Mg2+) own a higher positive charge than low valence (Li+), leading to a stronger exclusion between high valence cations and positive charged NF membrane and resulting in a stronger rejection to Mg2+ than Li+.
From the point of view of the distribution and extraction of lithium resources in salt lake, this article summarizes various methods for magnesium and lithium separation from brine. Based on the structure and mechanism of nanofiltration membrane, the relevant characteristics of nanofiltration membrane are analyzed and summarized comprehensively, and the application status and existing problems of magnesium and lithium separation by nanofiltration are reviewed. In view of the special structure and distribution of magnesium and lithium in salt lake brine in China, the prospect of nanofiltration technology applied to the separation of magnesia and lithium in salt lake is proposed.
Key words:  salt lake brine    lithium resources    separation of magnesium and lithium    nanofiltration    membrane separation
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TQ131.11  
基金资助: 国家自然科学基金(U1607117);天津市自然科学基金(16JCZDJC36400)
作者简介:  徐萍,2016年6月毕业于安徽工程大学,获得工学学士学位。现为天津工业大学纺织学院研究生,在钱晓明教授和徐志伟教授的指导下进行研究。目前主要研究领域为石墨烯改性分离膜。钱晓明,教授,博士研究生导师。qxm@tjpu.edu.cn。徐志伟,博士,教授,博士研究生导师。2007年获哈尔滨工业大学化学工程与技术专业博士学位,2007年8月进入天津工业大学,主要从事石墨烯改性分离膜、碳纤维复合材料界面改性工作。
引用本文:    
徐萍, 钱晓明, 郭昌盛, 徐志伟, 赵立环, 买魏, 李静, 田旭, 朵永超. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(3): 410-417.
XU Ping, QIAN Xiaoming, GUO Changsheng, XU Zhiwei, ZHAO Lihuan, MAI Wei, LI Jing, TIAN Xu, DUO Yongchao. Nanofiltration Technology Used for Separation of Magnesium and Lithium from Salt Lake Brine:a Survey. Materials Reports, 2019, 33(3): 410-417.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903006  或          http://www.mater-rep.com/CN/Y2019/V33/I3/410
1 Kesler S E, Gruber P W, Medina P A, et al. Ore Geology Reviews,2012,48(5),55.
2 Wu Q, Liu X F, Zheng M P, et al. Modern Chemical Industry,2017(5),1(in Chinese).
伍倩,刘喜方,郑绵平,等.现代化工,2017(5),1.
3 Araoka D. Japanese Magazine of Mineralogical & Petrological Sciences,2015,44(5),259.
4 Wu D F, Sun S Y, Yu J G. CIESC Journal,2018,69(1),141(in Chinese).
吴东帆,孙淑英,于建国.化工学报,2018,69(1),141.
5 Swain B. Separation & Purification Technology,2016,172,388.
6 Christmann P, Gloaguen E, Labbé J F, et al. In: Lithium Process Che-mistry, Elsevier, Netherlands,2015,pp.1.
7 Sun X, Hao H, Zhao F, et al. Environmental Science & Technology,2018,52(5),2827.
8 Cai Y L, Li J W. Acta Geoscientica Sinica,2017,38(1),25(in Chinese).
蔡艳龙,李建武.地球学报,2017,38(1),25.
9 Zheng M P, Zhang Y S, Liu X F, et al. Acta Geoscientica Sinica,2016,90(9),2123(in Chinese).
郑绵平,张永生,刘喜方,等.地质学报,2016,90(9),2123.
10 Li S Y, Kang L W, Liu J J, et al. Guangdong Chemical Industry,2016,43(24),81(in Chinese).
李神勇,康莲薇,刘建军,等.广东化工,2016,43(24),81.
11 Gao F, Zheng M P, Nie Z, et al. Acta Geoscientica Sinica,2011,32(4),483(in Chinese).
高峰,郑绵平,乜贞,等.地球学报,2011,32(4),483.
12 Yu J J, Zheng M P, Wu Q. Chemical Industry and Engineering Progress,2013,32(1),13(in Chinese).
余疆江,郑绵平,伍倩.化工进展,2013,32(1),13.
13 Liu Z, Zhou Y F, Chai D P, et al. Materials Review,2015(z2),1(in Chinese).
刘卓,周云峰,柴登鹏,等.材料导报,2015(z2),1.
14 Nie Z, Bu L Z, Wang Y S, et al. Inorganic Chemicals Industry,2013,45(5),1(in Chinese).
乜贞,卜令忠,王云生,等.无机盐工业,2013,45(5),1.
15 Fu Y, Zhong H. Multipurpose Utilization of Mineral Resources,2010(2),30(in Chinese).
付烨,钟辉.矿产综合利用,2010(2),30.
16 Zhao X, Zhang Q, Wu H H, et al. Chemical Industry and Engineering Progress,2017(7),796(in Chinese).
赵旭,张琦,武海虹,等.化学进展,2017(7),796.
17 Yu C, Gan Y X. Xinjiang Non-ferrous Metals,2007,30(A01),100(in Chinese).
于超,甘玉霞.新疆有色金属,2007,30(A01),100.
18 Zhao D, Du X M, Wang S Q, et al. Journal of Salt Science and Chemical Industry,2017,46(6),40(in Chinese).
赵冬,杜雪敏,王士强,等.盐业与化工,2017,46(6),40.
19 Zhang Z. The separation of lithium and magnesium and the preparation of magnesium hydroxide flame retardant use the calcined magnesium slag from salt lake. Master’s thesis, Chengdu University of Technology, China,2009(in Chinese).
张珍.盐湖煅烧镁渣锂镁分离及新型氢氧化镁阻燃剂的研究.硕士学位论文,成都理工大学,2009.
20 Yin H J, Deng T L, Li D C. Inorganic Chemicals Industry,2009,41(5),1(in Chinese).
尹红军,邓天龙,李栋婵.无机盐工业,2009,41(5),1.
21 Zhu H F, Gao J, Guo Y F, et al. Guangdong Trace Elements Science,2010,17(11),25(in Chinese).
朱华芳,高洁,郭亚飞,等.广东微量元素科学,2010,17(11),25.
22 Liu Y H, Deng T L. World Sci-Tech R&D,2006,28(5),69(in Chinese).
刘元会,邓天龙.世界科技研究与发展,2006,28(5),69.
23 Zhou Z, Liang S, Qin W, et al. Industrial & Engineering Chemistry Research,2013,52(23),7912.
24 Zhang L H, Yang Z P, Li C Z, et al. Inorganic Chemicals Industry,2016,48(12),52(in Chinese).
张黎辉,杨志平,李存增,等.无机盐工业,2016,48(12),52.
25 Ji Z Y, Huang Z H, Yuan J S, et al. Materials Review B: Research Papers,2017,31(6),131(in Chinese).
纪志永,黄智辉,袁俊生,等.材料导报:研究篇,2017,31(6),131.
26 Wang L, Zhang X, Ma L B, et al. Journal of Salt Science and Chemical Industry,2018,47(4),8(in Chinese).
王亮,张欣,马来波,等.盐科学与化工,2018,47(4),8.
27 Zhong H. Journal of Mineralogy and Petrology,1991(4),105(in Chinese).
钟辉.矿物岩石,1991(4),105.
28 Chen Q B, Ji Z Y, Liu J, et al. Journal of Membrane Science,2017,548,408.
29 Liao H R, Xu H, Li G, et al. Materials Review B: Research Papers,2015,29(2),90(in Chinese).
廖浩然,徐徽,李贵,等.材料导报:研究篇,2015,29(2),90.
30 Nie X Y, Sun S Y, Sun Z, et al. Desalination,2016,403,128.
31 Ji Z Y, Chen Q B, Yuan J S, et al. Separation & Purification Technology,2017,172,168.
32 Ball D L, Boateng D A D. US. patent application, US4636295,1987.
33 Song W D, Wang H Z, Xing K, et al. Journal of Salt Lake Research,2006,14(4),56(in Chinese).
宋卫得,王海增,邢坤,等.盐湖研究,2006,14(4),56.
34 Rautenbach R, Groschl A. Desalination,1990,77(1-3),73.
35 Li X, Zhang Z G, Ren X J, et al. Chemical Industry and Engineering Progress,2014,33(5),1210(in Chinese).
李祥,张忠国,任晓晶,等.化工进展,2014,33(5),1210.
36 Labban O, Liu C, Chong T H, et al. Journal of Membrane Science,2017,521,18.
37 Yang Y, Li X, Shen L, et al. RSC Advances,2017,7(29),18001.
38 Marchetti P, Solomon M F J, Szekely G, et al. Chemical Reviews,2014,114(21),10735.
39 Donnan F G. Journal of Membrane Science,1995,100(1),45.
40 Xu Z L, Tang Y J, Zhou B W, et al. Technology of Water Treatment,2015(12),3(in Chinese).
许振良,汤永健,周秉武,等.水处理技术,2015(12),3.
41 Ernst M, Bismarck A, Spinger J, et al. Journal of Membrane Science,2000,165(2),251.
42 Werber J R, Osuji C O, Elimelech M. Nature Reviews Materials,2016,1(5),16018.
43 Wang X L, Tu C H, Fang Y Y, et al. Membrane Science and Technology,2011,31(3),127(in Chinese).
王晓琳,涂丛慧,方彦彦,等.膜科学与技术,2011,31(3),127.
44 He Q X, Liu J Q, Yan G C, et al. Industrial Water Treatment,2010,30(7),22(in Chinese).
何启贤,刘久清,颜果春,等.工业水处理,2010,30(7),22.
45 Machado D R, Hasson D, Semiat R. Journal of Membrane Science,1999,166(1),63.
46 Chen X, Gu J H. Membrane Science and Technology,2013,33(3),108(in Chinese).
陈雪,谷景华.膜科学与技术,2013,33(3),108.
47 Qi M. Study on preparation and separation performance of cellulose acetate hollow fiber nanofiltration membrane. Master’s thesis, Zhejiang Sci-Tech University,China,2011(in Chinese).
祁明.醋酸纤维素中空纤维纳滤膜的制备与分离性能研究.硕士学位论文,浙江理工大学,2011.
48 Wen P. Preparation and characterization of graphene modified polyamide composite nanofiltration membrane. Master’s thesis, Tianjin Polytechnic University,China,2017(in Chinese).
文鹏.氧化石墨烯改性聚酰胺复合纳滤膜的制备及其性能表征.硕士学位论文,天津工业大学,2017.
49 Chen K K, Zhai D, Zhou Y, et al. Technology of Water Treatment,2014(2),42(in Chinese).
陈可可,翟丁,周勇,等.水处理技术,2014(2),42.
50 Song Y F. Study on performance of polyvinylidene fluoride tubular nanofiltration membrane. Master’s thesis, Tianjin Polytechnic University,China,2014(in Chinese).
宋云飞.聚偏氟乙烯管式纳滤膜性能研究.硕士学位论文,天津工业大学,2014.
51 Akbari A, Solymani H, Rostami S M M. Journal of Applied Polymer Science,2015,132(22),235.
52 Huang R, Chen G, Sun M, et al. Carbohydrate Research,2006,341(17),2777.
53 Jiang D, Qin D L, Xu Y F, et al. Applied Chemical Industry,2017,46(2),254(in Chinese).
姜迪,秦冬玲,徐异峰,等.应用化工,2017,46(2),254.
54 Liu S, Fang F, Wu J, et al. Desalination,2015,375(2),121.
55 Castricum H L, Sah A, Geenevasen J A J, et al. Journal of Sol-Gel Science and Technology,2008,48(1-2),11.
56 Ahmad J, Deshmukh K, Habib M, et al. Arabian Journal for Science & Engineering,2014,39(10),6805.
57 Vatanpour V, Madaeni S S, Khataee A R, et al. Desalination,2012,292(9),19.
58 Cot L, Ayral A, Durand J, et al. Solid State Sciences,2000,2(3),313.
59 Sharp K G. Advanced Materials,1998,10(15),1243.
60 Lacan P, Guizard C, Gall P L, et al. Journal of Membrane Science,1995,100(100),99.
61 Yu L Y, Xu Z L, Shen H M, et al. Journal of Membrane Science,2009,337(1),257.
62 Li X P, Hu X Y, Zhang Y F, et al. New Chemical Materials,2015(7),227(in Chinese).
李希鹏,胡晓宇,张宇峰,等.化工新型材料,2015(7),227.
63 Li Z K, Zhou Y, Zhu J M, et al. Technology of Water Treatment,2009,35(12),1(in Chinese).
李兆魁,周勇,朱家民,等.水处理技术,2009,35(12),1.
64 Zhu W P, Sun S P, Gao J, et al. Journal of Membrane Science,2014,456(8),117.
65 Wang H, Cui M B, Yan D D, et al. Materials Review B: Research Papers,2018,32(2),555(in Chinese).
王辉,崔梦冰,闫冬冬,等.材料导报:研究篇,2018,32(2),555.
66 Li H L, Tan L Y, Zhang H Q, et al. New Chemical Materials,2009,37(11),42(in Chinese).
李惠玲,谭翎燕,张浩勤,等.化工新型材料,2009,37(11),42.
67 Cheng X Q, Zhang Y L, Wang Z X, et al. DOI:10.1016/j.desal.2014.10.043.
68 Zinadini S, Zinatizadeh A A L, Rahimi M, et al. Journal of Industrial & Engineering Chemistry,2016,46,9.
69 Feng C, Xu J, Li M, et al. Journal of Membrane Science,2014,451(2),103.
70 Decher G, Hong J D. Macromolecular Symposia,1991,46(1),321.
71 Jimenez-Solomon M F, Song Q, Jelfs K E, et al. Nature Materials,2016,15(7),760.
72 Huan G L, Zhang Y F, Du Q Y, et al. Journal of Tianjin Polytechnic University,2003,22(1),47(in Chinese).
环国兰,张宇峰,杜启云,等.天津工业大学学报,2003,22(1),47.
73 Dong Y, Su Y, Ju W, et al. Desalination,2014,333(1),59.
74 Mohammad A W, Teow Y H, Ang W L, et al. Desalination,2015,356,226.
75 Wen X, Ma P, Zhu C, et al. Separation & Purification Technology,2006,49(3),230.
76 Yang G, Shi H, Liu W, et al. Chinese Journal of Chemical Engineering,2011,19(4),586.
77 Somrani A, Hamzaoui A H, Pontie M. Desalination,2013,317(7),184.
78 Kang W Q, Shi L J, Zhao Y J, et al. Inorganic Chemicals Industry,2014,46(12),22(in Chinese).
康为清,时历杰,赵有璟,等.无机盐工业,2014,46(12),22.
79 Bi Q, Zhang Z, Zhao C, et al. Water Science & Technology,2014,70(10),1690.
80 Shi H, Qi M F, Yang G, et al. In: National Chemical Engineering and Biochemical Industry Annual Conference. Changsha,2010,pp.1.
史宏,戚茂飞,杨刚,等.全国化学工程与生物化工年会.长沙,2010,1.
81 Ji C. Study on separation of magnesium and lithium by nanofiltration. Master’s thesis, East China University of Science and Technology, China,2014(in Chinese).
计超.纳滤分离镁锂过程研究.硕士学位论文,华东理工大学,2014.
82 Kang W Q. Study on separation of magnesium and lithium in saline lake brine by nanofiltration. Master’s thesis, Qinghai Institute of Salt Lakes, Chinese Academy of Science, China,2014(in Chinese).
康为清.纳滤法应用于盐湖卤水镁锂分离的研究.硕士学位论文,中国科学院研究生院(青海盐湖研究所),2014.
83 Sun S Y, Cai L J, Nie X Y, et al. Journal of Water Process Engineering,2015,7,210.
84 Xing H, Wang X H, Mao X Y. Journal of Salt and Chemical Industry,2016,45(1),24(in Chinese).
邢红,王肖虎,毛新宇.盐业与化工,2016,45(1),24.
85 Lau W J, Ismail A F, Goh P S, et al. Separation & Purification Reviews,2015,44(2),135.
86 Li X, Zhang C, Zhang S, et al. Desalination,2015,369,26.
87 Li W, Shi C, Zhou A, et al. Separation & Purification Technology,2017,186,233.
[1] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[2] 苏慧,朱兆武,王丽娜,齐涛. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126.
[3] 孟仙, 邓橙, 朱孟府, 李奎, 邓宇. 纳米氧化镁表面修饰制备荷正电微孔陶瓷膜及其性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 16-20.
[4] 赵曼, 张慧峰, 张雨山, 黄海, 魏杨扬. 碳纳米管的性能及其在海水淡化膜分离材料中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 116-122.
[5] 许乃才, 史丹丹, 黎四霞, 刘忠, 董亚萍, 李武. 利用吸附技术提取盐湖卤水中锂的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 116-121.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed