Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23080074-18    https://doi.org/10.11896/cldb.23080074
  无机非金属及其复合材料 |
富锂锰基正极材料研究进展
童汇1,2, 谢建龙1,3, 张志谋1, 郭忻3, 喻万景1,2,*, 郭学益1,2, 黄承焕1,3,*
1 中南大学冶金与环境学院,长沙 410083
2 有色金属资源循环利用国家地方联合工程研究中心,长沙 410083
3 湖南长远锂科新能源有限公司,长沙 410205
Research Progress of Li-rich Mn-based Cathode Materials
TONG Hui1,2, XIE Jianlong1,3, ZHANG Zhimou1, GUO Xin3, YU Wanjing1,2,*, GUO Xueyi1,2, HUANG Chenghuan1,3,*
1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
2 National & Regional Joint Engineering Research Center of Nonferrous Metal Resource Recycling, Changsha 410083, China
3 Hunan Changyuan Lico New Energy Co., Ltd., Changsha 410205, China
下载:  全 文 ( PDF ) ( 80471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富锂锰基材料(LRMOs)因具有能量密度高、成本低和环境友好等优点而备受青睐。然而,LRMOs存在首次库仑效率低、循环性能和倍率性能差等固有缺陷,限制了其商业化应用。为了应对这些局限,研究者们对LRMOs的制备方法不断进行改进,并且提出了多种改性措施,使得 LRMOs 的性能显著提高。本文介绍了LRMOs的组成与结构、充放电机理,总结了LRMOs的最新研究进展,包括制备方法、面临的挑战和常见改性策略,并指明了未来LRMOs的研究重点,为今后LRMOs的研究及开发提供了重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童汇
谢建龙
张志谋
郭忻
喻万景
郭学益
黄承焕
关键词:  富锂锰基材料  锂离子电池  改性  电化学性能    
Abstract: Li-rich Mn-based materials (LRMOs) are highly favored due to their high energy density, cost-effectiveness, and eco-friendliness. However, LRMOs have inherent defects such as low initial Coulombic efficiency, poor cycling and rate performance, which limit their commercial application. In order to address these limitations, researchers have been working on enhancing the preparation techniques of LRMOs and proposing various modification strategies, which have significantly improved the performance of LRMOs. This summary introduces the composition, structure, charging and discharging mechanisms of LRMOs. It summarizes the latest research progress of LRMOs, including preparation methods, challenges faced, and common modification strategies. Moreover, it highlights the future research focus of LRMOs. This work provides valuable references for the research and development of LRMOs in the future.
Key words:  Li-rich Mn-based material    lithium ion battery    modification    electrochemical performance
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TM912  
基金资助: 国家自然科学基金(52227806);长沙市重大科技攻关项目(kh2301024);中南大学前沿交叉项目(2023QYJC027)
通讯作者:  *喻万景,博士,中南大学冶金与环境学院副教授、硕士研究生导师。主要研究方向为低维碳基纳米复合电极材料与新型储能器件、有色金属资源的综合利用等。yuwj2005@163.com; 黄承焕,博士,湖南长远锂科股份有限公司正高级工程师,中南大学硕、博士研究生校外兼职指导老师。主要从事锂离子电池正极材料开发、锂离子电池失效机理研究。chhuang@minmetals.com   
作者简介:  童汇,日本九州大学博士,美国纽约大学博士后。现为中南大学冶金与环境学院教授、博士研究生导师。主要研究方向为新型储能电池材料的设计与开发、失效动力电池清洁回收与循环利用、有色金属资源综合利用等。
引用本文:    
童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
TONG Hui, XIE Jianlong, ZHANG Zhimou, GUO Xin, YU Wanjing, GUO Xueyi, HUANG Chenghuan. Research Progress of Li-rich Mn-based Cathode Materials. Materials Reports, 2025, 39(3): 23080074-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080074  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23080074
1 Li X, Liu J, Banis M N, et al. Energy & Environmental Science, 2014, 7(2), 768.
2 Huang Z Y. Study on modification and properties of layered Li-rich Mn-based cathode material Li1. 2Mn0. 54Ni0. 13Co0. 13O2. Master's Thesis, Lanzhou University of Technology, China, 2022 (in Chinese).
黄照宇. 层状富锂锰基正极材料Li1. 2Mn0. 54Ni0. 13Co0. 13O2的改性及其性能研究. 硕士学位论文, 兰州理工大学, 2022.
3 Zhai X, Zhang P, Huang H, et al. Solid State Ionics, 2021, 366, 115661.
4 Nan W Z, Wang J X, Chen X, et al. Journal of Aeronautical Materials, 2021, 41(1), 1 (in Chinese).
南文争, 王继贤, 陈翔, 等. 航空材料学报, 2021, 41(1), 1.
5 Mauger A, Julien C M. Ionics, 2017, 23(8), 1933.
6 Huang B, Wang M, Xu G, et al. Ceramics International, 2021, 47(6), 7700.
7 He W, Liu P, Zhang Y, et al. Journal of Power Sources, 2021, 499, 229915.
8 Nie X K. Study on preparation and synergistic modification of lithium-rich manganese-based cathode materials. Ph. D. Thesis, Shandong University, China, 2021 (in Chinese).
聂祥坤. 富锂锰基正极材料的制备及协同改性研究. 博士学位论文, 山东大学, 2021.
9 Zeng W T. On the doping modification and electrochemical performance of Li-rich Mn-based Li1. 2Mn0. 54Ni0. 13Co0. 13O2. Master's Thesis, Guangxi University, China, 2022 (in Chinese).
曾维添. 富锂锰基Li1. 2Mn0. 54Ni0. 13Co0. 13O2的掺杂改性及电化学性能研究. 硕士学位论文, 广西大学, 2022.
10 Pimenta V, Sathiya M, Batuk D, et al. Chemistry of Materials, 2017, 29(23), 9923.
11 Cui S L, Wang Y Y, Liu S, et al. Electrochimica Acta, 2019, 328, 135109.
12 Qian Y, Duan J, Wu Q, et al. Journal of Materials Science-Materials in Electronics, 2022, 33(6), 3151.
13 Yu W H, Zhao L Y, Wang Y Y, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 3040 (in Chinese).
于文华, 赵刘洋, 王艳艳, 等. 硅酸盐学报, 2022, 50(11), 3040.
14 Xie J, Qian Y, Duan J, et al. Nano, 2021, 16(12), 2150137.
15 Genevois C, Koga H, Croguennec L, et al. Journal of Physical Chemistry C, 2015, 119(1), 75.
16 Jarvis K A, Deng Z, Allard L F, et al. Chemistry of Materials, 2011, 23(16), 3614.
17 Zheng H, Han X, Guo W, et al. Materials Today Energy, 2020, 18, 100518.
18 Yu H, Ishikawa R, So Y G, et al. Angewandte Chemie-International Edition, 2013, 52(23), 5969.
19 Lu Z H, Chen Z H, Dahn J R. Chemistry of Materials, 2003, 15(16), 3214.
20 He W, Guo W, Wu H, et al. Advanced Materials, 2021, 33(50), 2005937.
21 Feng Z J, Song H, Su W, et al. Chemical Engineering Journal, 2022, 450, 138114.
22 Liu Y, Yang Z, Zhong J, et al. ACS Nano, 2019, 13(10), 11891.
23 Son M Y, Hong Y J, Choi S H, et al. Electrochimica Acta, 2013, 103, 110.
24 Robertson A D, Bruce P G. Chemical Communications, 2002, 23, 2790.
25 Koyama Y, Tanaka I, Nagao M, et al. Journal of Power Sources, 2009, 189(1), 798.
26 Liu P F. Regulating anionic redox towards improvements on the electrochemical performance of Li-rich cathode materials. Ph. D. Thesis, Xiamen University, China, 2020 (in Chinese).
刘鹏飞. 晶格氧活性调控提升富锂正极材料的电化学性能研究. 博士学位论文, 厦门大学, 2020.
27 Wei Y, Zheng J, Cui S, et al. Journal of the American Chemical Society, 2015, 137(26), 8364.
28 Yao S G, Wei C, Cheng J, et al. Battery, 2018, 48(1), 13 (in Chinese).
姚寿广, 魏超, 程杰, 等. 电池, 2018, 48(1), 13.
29 Liu X Y. Preparation of the precursors for high-performance lithium-rich manganese-based cathode material and their performance study. Master's Thesis, Ningxia University, China, 2022 (in Chinese).
刘晓阳. 高性能富锂锰基正极材料前驱体的制备及其性能研究. 硕士学位论文, 宁夏大学, 2022.
30 Wang M, Han Y, Chu M, et al. Journal of Alloys and Compounds, 2021, 861, 158000.
31 Ma G, Li S, Zhang W X, et al. Angewandte Chemie-International Edition, 2016, 55(11), 3667.
32 Chen Q, Pei Y, Chen H W, et al. Nature Communications, 2020, 11(1), 3411.
33 Zhang Q. Synthesis of lithium-rich manganese-based gradient layered oxide materials by carbonate. Master's Thesis, Beijing University of Technology, China, 2018 (in Chinese).
张琦. 碳酸盐合成富锂锰基梯度层状氧化物研究. 硕士学位论文, 北京工业大学, 2018.
34 Cao W P, Yan J T, Zhang P, et al. Ionics, 2022, 28(10), 4515.
35 Abdel-Ghany A E, Hashem A M, Mauger A, et al. Journal of Solid State Electrochemistry, 2020, 24(11-12), 3157.
36 Si M, Wang D, Zhao R, et al. Advanced Science, 2020, 7(3), 1902538.
37 Liu X Y, Zhang D Y, Hu H C, et al. Journal of Alloys and Compounds, 2022, 904, 164024.
38 Cai Y X, Ku L, Wang L S, et al. Science China-Materials, 2019, 62(10), 1374.
39 Han J, Zheng H, Hu Z, et al. Electrochimica Acta, 2019, 299, 844.
40 Xiang Y H, Jiang Y L, Liu S Q, et al. Frontiers in Chemistry, 2020, 8, 729.
41 Xin Y, Lan X, Chang P, et al. Applied Surface Science, 2018, 447, 829.
42 Qiao Q Q, Zhang H Z, Li G R, et al. Journal of Materials Chemistry A, 2013, 1(17), 5262.
43 Liu J, Yang Z, Liu Q, et al. Ceramics International, 2023, 49(4), 6580.
44 Liao J, Zhang Z, Fan W, et al. Electrochimica Acta, 2022, 405, 139798.
45 Yan P, Nie A, Zheng J, et al. Nano Letters, 2015, 15(1), 514.
46 La Mantia F, Rosciano F, Tran N, et al. Journal of Applied Electroche-mistry, 2008, 38(7), 893.
47 Zou W, Xia F J, Song J P, et al. Electrochimica Acta, 2019, 318, 875.
48 Mohanty D, Li J, Abraham D P, et al. Chemistry of Materials, 2014, 26(21), 6272.
49 Liu T, Liu J, Li L, et al. Nature, 2022, 606(7913), 305.
50 Li X, Tang M, Feng X, et al. Chemistry of Materials, 2017, 29(19), 8282.
51 Gauthier M, Carney T J, Grimaud A, et al. Journal of Physical Chemistry Letters, 2015, 6(22), 4653.
52 Oh P, Oh S M, Li W D, et al. Advanced Science, 2016, 3(11), 1600184.
53 Leifer N, Penki T, Nanda R, et al. Physical Chemistry Chemical Physics, 2020, 22(16), 9098.
54 Sathiya M, Rousse G, Ramesha K, et al. Nature Materials, 2013, 12(9), 827.
55 Guo W B, Zhang Y G, Lin L, et al. Small, DOI:10. 1002/smll. 202300175.
56 Liu S, Liu Z, Shen X, et al. Advanced Energy Materials, 2018, 8(31), 1802105.
57 Li S, Yang L, Liu Z, et al. Energy Storage Materials, 2023, 55, 356.
58 Kim S B, Kim H, Park D H, et al. Journal of Power Sources, 2021, 506, 230219.
59 Wang M J, Yu F D, Sun G, et al. Journal of Materials Chemistry A, 2019, 7(14), 8302.
60 Zhang K, Qi J, Song J, et al. Advanced Materials, 2022, 34(11), 2109564.
61 Li L, Song B H, Chang Y L, et al. Journal of Power Sources, 2015, 283, 162.
62 Qing R P, Shi J L, Xiao D D, et al. Advanced Energy Materials, 2016, 6(6), 1501914.
63 Qiu B, Wang J, Xia Y, et al. Journal of Power Sources, 2013, 240, 530.
64 Ma Q, Chen Z, Zhong S, et al. Nano Energy, 2021, 81, 105622.
65 Zhang S, Tang T, Ma Z, et al. Journal of Power Sources, 2018, 380, 1.
66 Ding X, Li Y X, He X D, et al. ACS Applied Materials & Interfaces, 2019, 11(34), 31477.
67 He Z, Wang Z, Chen H, et al. Journal of Power Sources, 2015, 299, 334.
68 Guo H, Xia Y, Zhao H, et al. Ceramics International, 2017, 43(16), 13845.
69 Tang W, Duan J, Xie J, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16407.
70 Sun Z, Xu L, Dong C, et al. Journal of Materials Chemistry A, 2019, 7(7), 3375.
71 Zhang P, Zhai X, Huang H, et al. Ceramics International, 2020, 46(15), 24723.
72 Saroha R, Cho J S, Ahn J H. Electrochimica Acta, 2021, 366, 137471.
73 Feng X, Gao Y, Ben L, et al. Journal of Power Sources, 2016, 317, 74.
74 Su N, Lyu Y, Gu R, et al. Journal of Alloys and Compounds, 2018, 741, 398.
75 Zhang X, Yu R, Huang Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(10), 12969.
76 Kong J Z, Zhai H F, Qian X, et al. Journal of Alloys and Compounds, 2017, 694, 848.
77 Shi S J, Tu J P, Tang Y Y, et al. Electrochimica Acta, 2013, 88, 671.
78 Zhang C, Feng Y, Wei B, et al. Nano Energy, 2020, 75, 104995.
79 Li C D, Yao Z L, Xu J, et al. Ionics, 2017, 23(3), 549.
80 Niu B, Li J, Liu Y, et al. Ceramics International, 2019, 45(9), 12484.
81 Xia Q, Zhao X, Xu M, et al. Journal of Materials Chemistry A, 2015, 3(7), 3995.
82 Yang J, Li P, Zhong F, et al. Advanced Energy Materials, 2020, 10(15), 1904264.
83 Wu C, Fang X, Guo X, et al. Journal of Power Sources, 2013, 231, 44.
84 Zhang J, Lu Q W, Fang J H, et al. ACS Applied Materials & Interfaces, 2014, 6(20), 17965.
85 Liu B, Zhang Q, He S, et al. Electrochimica Acta, 2011, 56(19), 6748.
86 Lai X, Hu G, Peng Z, et al. Journal of Power Sources, 2019, 431, 144.
87 Yang S Q, Wang P B, Wei H X, et al. Nano Energy, 2019, 63, 103889.
88 Chen C, Geng T F, Du C Y, et al. Journal of Power Sources, 2016, 331, 91.
89 Zhang J, Zhang H, Gao R, et al. Physical Chemistry Chemical Physics, 2016, 18(19), 13322.
90 Li M, Wang H Y, Zhao L M, et al. Journal of Solid State Chemistry, 2019, 272, 38.
91 Mu K, Tao Y, Peng Z, et al. Applied Surface Science, 2019, 495, 143503.
92 Duan J, Tang W, Wang R, et al. Applied Surface Science, 2020, 521, 146504.
93 Kim S Y, Park C S, Hosseini S, et al. Advanced Energy Materials, 2021, 11(30), 2100552.
94 Li M. Study of two layers coating, co-doping, coating and la-doping combined errect in lithium-rich layered oxide material. Master's Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
李敏. 富锂层状氧化物材料中双包覆、双掺杂、掺杂包覆联合改性的研究. 硕士学位论文, 上海交通大学, 2019.
95 Liu W, Oh P, Liu X, et al. Advanced Energy Materials, 2015, 5(13), 1500274.
96 Mei J, Chen Y, Xu W, et al. Chemical Engineering Journal, 2022, 431, 133799.
97 Langdon J, Manthiram A. Energy Storage Materials, 2021, 37, 143.
98 Su Y, Wang M, Zhang M, et al. Journal of Alloys and Compounds, 2022, 905, 164204.
99 Sun J, Sheng C, Cao X, et al. Advanced Functional Materials, 2022, 32(10), 2110295.
100 Yabuuchi N, Kubota K, Aoki Y, et al. Journal of Physical Chemistry C, 2016, 120(2), 875.
101 Jiao C, Wang M, Huang B, et al. Journal of Alloys and Compounds, 2023, 937, 168389.
102 Luo Q, Xie Y X, Wu Z J, et al. ACS Applied Energy Materials, 2021, 4(5), 4867.
103 Zhang X, Cao S, Yu R, et al. ACS Applied Energy Materials, 2019, 2(2), 1563.
104 Zheng Y, Chen L, Su Y, et al. Journal of Materials Chemistry A, 2017, 5(46), 24292.
105 Guo W, Zhang C, Zhang Y, et al. Advanced Materials, 2021, 33(38), 2103173.
106 Guo H, Wei Z, Jia K, et al. Energy Storage Materials, 2019, 16, 220.
107 Huang X, Zhang D, Xu S, et al. Chemical communications (Cambridge, England), 2023, 59(36), 5379.
108 Luo D, Ding X, Fan J, et al. Angewandte Chemie-International Edition, 2020, 59(51), 23061.
109 Qiu B, Zhang M, Wu L, et al. Nature Communications, 2016, 7, 12108.
110 Chen J, Zou G Q, Deng W T, et al. Advanced Functional Materials, 2020, 30(46), 2004302.
111 Luo D, Shi P, Fang S, et al. Journal of Power Sources, 2017, 364, 121.
112 Li Y, Bai Y, Wu C, et al. Journal of Materials Chemistry A, 2016, 4(16), 5942.
113 Fu F, Yao Y, Wang H, et al. Nano Energy, 2017, 35, 370.
114 Zhu Z, Yu D W, Yang Y, et al. Nature Energy, 2019, 4(12), 1049.
115 Yang X, Wang X, Zou G, et al. Journal of Power Sources, 2013, 232, 338.
116 Cao S, Wu C, Xie X, et al. ACS Applied Materials & Interfaces, 2021, 13(15), 17639.
117 Huang J J. Research on preparation and modification of O2-type lithium-rich manganese-based cathode material. Master's Thesis, Tianjin University of Technology, China, 2022 (in Chinese).
黄俊杰. O2型富锂锰基正极材料的制备与改性研究. 硕士学位论文, 天津理工大学, 2022.
118 Luo D, Zhu H, Xia Y, et al. Nature Energy, 2023, 8(10), 1078.
119 Zhang S, Gu H, Pan H, et al. Advanced Energy Materials, 2017, 7(6), 1601066.
120 Zhang G, Qiu B, Xia Y, et al. Journal of Power Sources, 2019, 420, 29.
121 Xiao Z, Liu J, Fan G, et al. Materials Chemistry Frontiers, 2020, 4(6), 1689.
122 Zhang X, Zhao J, Lee G H, et al. Advanced Energy Materials, DOI:10. 1002/aenm. 202202929.
[1] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[2] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[3] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[4] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[5] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[6] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[7] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[8] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[9] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[10] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[11] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[14] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[15] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[3] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[4] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[5] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[6] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[7] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[8] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[9] Yan MA,Zhi LI,Ruilong RAN,Kang LI. Research on Application of Silk in Biomaterial Field[J]. Materials Reports, 2018, 32(1): 86 -92 .
[10] Kui ZHENG,Changlai YUAN,Xingxing ZHOU,Weiqing WANG,Jiwen XU,Changrong ZHOU. Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics[J]. Materials Reports, 2018, 32(2): 171 -175 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed