Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23120216-8    https://doi.org/10.11896/cldb.23120216
  高分子与聚合物基复合材料 |
微波加热对石油沥青的化学、流变及工程特性的影响
王黎明*, 孙永卓, 庞宏, 许继新, 董明泽
东北林业大学土木与交通学院,哈尔滨 150040
Effect of Microwave Heating on Chemical, Rheological and Engineering Properties of Petroleum Asphalt
WANG Liming*, SUN Yongzuo, PANG Hong, XU Jixin, DONG Mingzhe
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 5050KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波加热用于沥青路面养护高效且节能,但微波加热沥青附带的化学效应影响尚未被关注。本工作借助四组分分析、红外光谱分析、光学显微观察等方法分析了微波加热沥青的化学成分和化学结构变化。结果表明,经历10 min微波辐照后的典型石油沥青重质组分显著减少,沥青质聚集体均化分散,同时部分饱和化合物转化为非饱和化合物,判断是微波的选择性不均匀加热使沥青发生了低温热裂化。动态剪切流变、弯曲梁流变、旋转薄膜烘箱老化等进一步的流变和工程特性分析表明,微波加热沥青的高温黏度显著降低,中温时略变软且触变界限提高,低温时蠕变能力下降,软化点和玻璃化温度等协调关系发生了反常的变化,耐老化性下降。微波加热过程对沥青理化性质的影响是显著和深远的,同时它对沥青的活化和降黏作用也有改性、再生、温拌等工程应用的可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王黎明
孙永卓
庞宏
许继新
董明泽
关键词:  道路工程  石油沥青  微波加热  化学  流变  工程特性    
Abstract: Microwave heating is efficient and energy-saving for asphalt pavement maintenance, however, the additional chemical effects of the microwave heating process on asphalt have not been paid attention to. In this work, chemical composition and structural changes of asphalt heated by microwave were analyzed by four-component analysis, infrared spectrum analysis, optical microscopic observation. The results showed that the typical heavy components of petroleum asphalt after 10 min microwave irradiation were significantly reduced, the asphaltene aggregates were homogenized and dispersed, and some saturated compounds were converted into unsaturated compounds. Further rheological and engineering characteristics analysis such as dynamic shear rheology, bending beam rheology, and aging of rotary film oven showed that, at a high temperature, the viscosity of asphalt heated by microwave decreases significantly, at a medium temperature, the asphalt slightly softened and its thixotropic limit increased, at a low temperature, creep ability of the asphalt decreased, and the coordination relationship between softe-ning point and glass transition temperature changed abnormally, and the aging resistance decreased. The influence of microwave heating process on the physical and chemical properties of asphalt is significant and far-reaching, and it also provides the possibility of modification, regeneration, warm mix and other engineering applications for asphalt activation and viscosity reduction.
Key words:  road engineering    petroleum asphalt    microwave heating    chemical    rheological    engineering property
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  U416  
基金资助: 国家自然科学基金面上项目(52278449);黑龙江省交通运输科技项目(HJK2023B014-3);黑龙江省交通运输厅科技项目 (20210027)
通讯作者:  * 王黎明,东北林业大学土木与交通学院副教授、博士研究生导师。1998年东北林业大学交通土建工程专业本科毕业在东北林业大学工作至今,2012年哈尔滨工业大学道路与铁道工程学博士毕业。目前主要从事路面材料结构与材料、功能性路面等方面的研究工作。发表论文60余篇。 wangliming@nefu.edu.cn   
引用本文:    
王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
WANG Liming, SUN Yongzuo, PANG Hong, XU Jixin, DONG Mingzhe. Effect of Microwave Heating on Chemical, Rheological and Engineering Properties of Petroleum Asphalt. Materials Reports, 2024, 38(24): 23120216-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120216  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23120216
1 Zeng Z W, Zheng C, Mao T Y, et al. Journal of Chemical Industry and Engineering, 2019, 70(S1), 1 (in Chinese).
曾昭文, 郑成, 毛桃嫣, 等. 化工学报, 2019, 70(S1), 1.
2 Wang F, Zhu H B, Shu B N, et al. Construction and Building Materials, 2022, 342(A), 127973.
3 Ma D C, Liu C Q, Gui X. Journal of Harbin Institute of Technology, 2022, 54(9), 44 (in Chinese).
马登成, 刘成启, 桂学. 哈尔滨工业大学学报, 2022, 54(9) 44.
4 Ye H Y, Wang X C, Fang N R, et al. Engineering Journal of Wuhan University, 2019, 52(11), 981 (in Chinese).
叶宏宇, 王选仓, 房娜仁, 等. 武汉大学学报(工学版), 2019, 52(11), 981.
5 Xue L, Hao P W, Zou T Y, et al. Highway, 2007(2), 149 (in Chinese).
薛亮, 郝培文, 邹天义 等. 公路, 2007(2), 149.
6 Zheng H X, Zhang D S. Journal of Highway and Transportation Research and Development, 2014, 10(3), 27 (in Chinese).
曾红雄, 张东省. 公路交通科技, 2014, 10(3), 27.
7 Zhao Y, Li J W, Zheng Y, et al. Applied Chemical Industry, 2023, 52(5), 1404(in Chinese).
赵毅, 李静雯, 郑煜 等. 应用化工, 2023, 52(5), 1404.
8 Bosisio R G, Cambon J L, Chavarie C. et al. The Journal of Microwave Power, 1977, 12, 301.
9 Well E T. US patent, US4376034, 1983.
10 Jiang H Y. Study on the action of microwave on high viscosity and high condensation crude oil. Ph. D. Thesis, Southwest Petroleum Institute, China, 2004 (in Chinese).
蒋华义. 微波对高黏高凝原油作用规律研究. 博士学位论文, 西南石油学院, 2004.
11 Wang Y, Wei A J, Jiang H Y, et al. Acta Microwave Sinica, 2003(3), 87 (in Chinese).
王颖, 魏爱军, 蒋华义, 等. 微波学报, 2003(3), 87.
12 Wang Y. Research on viscosity reduction mechanism of microwave heating of heavy oil. Ph. D. Thesis, Graduate University of Chinese Academy of Sciences (Institute of Electronics), China, 2002 (in Chinese).
王颖. 稠油微波加热降黏机理的研究. 博士学位论文, 中国科学院研究生院(电子学研究所), 2002.
13 Kołodziejski R, Zieliński J. Gurdzińska E. Przemysl Chemiczny, 2009, 88(11), 1188.
14 Bera A, Babadagli T. Applied Energy, 2015, 151(C), 206.
15 Yang Z Z, Zhu J Y, Li X G, et al. Chemical Industry and Engineering Progress, 2016, 35(11), 3478 (in Chinese).
杨兆中, 朱静怡, 李小刚, 等. 化工进展, 2016, 35(11), 3478.
16 Yazdani B, Hossein A, Dehaghani S, et al. Geoenergy Science and Engineering, 2023, 227, 211946.
17 Zhao Y L, Gu F, Huang X M. Journal of Building Materials, 2011, 14(5), 620 (in Chinese).
赵永利, 顾凡, 黄晓明. 建筑材料学报, 2011, 14(5), 620.
18 Zhang B L. Asphalt structure characterization based on infrared spectroscopy. Master’s Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
张葆琳. 基于红外光谱的沥青结构表征研究. 硕士学位论文, 武汉理工大学, 2014.
19 Gong M, Yang J, Wei J M, et al. Road Materials and Pavement Design, 2017, 18(3), 507.
20 Zhang X J, Tong P P, Lin X X, et al. Materials Reports, 2021, 35(18), 18083 (in Chinese).
张喜军, 仝配配, 蔺习雄, 等. 材料导报, 2021, 35(18), 18083.
21 Tan Y Q, Li G N, Shan L Y, et al. Journal of Traffic and Transportation Engineering, 2020, 20(6), 1(in Chinese).
谭忆秋, 李冠男, 单丽岩, 等. 交通运输工程学报, 2020, 20(6), 1.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[4] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[5] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[6] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[7] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[8] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[9] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[10] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[11] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[12] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[13] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[14] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[15] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed